$\frac{\text { Symplectic Geometry, Math } 248}{2021 \text { F }}$
Lecture 1
\rightarrow Go through basic info

* No exams no how
* Problems stated in lectures $\}$
tr ito them how much they toke home
*OH: TBA
\rightarrow why is SG important? Two aspects:
* Math Language (like algebra on dist. manifolds)
connecting disparate areas:
- clasical mechanics, quantum physics, dit geometry, string and mirror thess etc... Heep coming up
* Genuinely deep usulb...

In this class - always a chose -
a bit of both...

Math 248, Symplectic Geometry, Fall 2021

- Lectures: TTh 9:50 AM - 11:25 AM, McHenry Clrm 4130
- Instructor: Viktor Ginzburg; office: McHenry 4124
email: ginzburg(at)ucsc.edu
- Office Hours: TBA or by appointment
- Text: There will be no "official" textbook in this course. Suggested reading:
- Introduction to Symplectic Topology by Dusa McDuff and Dietmar Salamon,
- Lectures on Symplectic Geometry by Ana Canas da Silva,
- Morse Theory and Floer Homology by Michelle Audin and Mihai Damian
- Tentative Syllabus: The course will cover fundamentals from symplectic geometry and touch upon Morse theory with an eye on applications of modern symplectic topological techniques to Hamiltonian dynamics. We will begin with an (ideally, brief) discussion of basic concepts of symplectic geometry: symplectic manifolds, Hamiltonian diffeomorphisms and flows, Lagrangian submanifolds, the least action principle, etc. We will also introduce several classes of dynamical systems of interest, such as geodesic flows and twisted geodesic (or magnetic) flows, and formulate the main problems in dynamics (e.g., Arnold's and Weinstein's conjectures, i.e., the existence of fixed points and periodic orbits) studied by symplectic techniques. Then we turn to a very brief review of Morse theory. In contrast with previous iterations of this course, this time I plan to focus more on Lagrangian submanifolds -- one of the most fundamental objects in symplectic geometry. Time permitting, we will touch upon symplectic topological methods (e.g., Lagrangian and Hamiltonian Floer homology) and/or conclude the course with student presentations.

It should be said that this is not a comprehensive course in symplectic geometry and many important concepts (mainly those concerning symmetries) will be entirely omitted or just briefly mentioned.

COVID-19 Information: Please take care to comply with all university guidelines about masking in indoor settings, performing daily symptom and badge checks, testing as required by the campus vaccine policy, self-isolating in the event of exposure, and respecting others' comfort with distancing. Please do not come to class if your badge is not green. If you are ill or suspect you may have been exposed to someone who is ill, or if you have symptoms that are in any way similar to those of COVID-19, please err on the side of caution and stay home until you are well or have tested negative after an exposure.

1. Symplectic manifolds

- Defis and basir examples

Origins - Mamiltonian dynom ics to be discussed later
Des $\frac{\text { Areal finite dim symplectir v.s. }}{(V, \omega)}$
W) skew-summethic form
$\omega: V \times V \rightarrow \mathbb{R} \quad \omega(X, Y)=-\omega(Y, X)$

* nun-degenerde
- $\forall X \neq 0 \exists Y: \omega(X, \xi) \neq 0$
- e_{1}, \ldots, e_{m} basts $\omega=\sum \omega_{i j} e_{i}^{x} e_{j}^{\chi}$ $\operatorname{det} \omega_{i j} \neq 0$

$$
\begin{aligned}
\Rightarrow \operatorname{dim} V=e v e n=2 n: \operatorname{det} \omega & =\operatorname{det} \omega^{\top} \\
& =\operatorname{det}(-\omega) \\
\cdot \omega^{\#}: V \cong V^{*} \quad & =(-1)^{\operatorname{dim} v} \operatorname{det}(\omega)
\end{aligned}
$$

Ex J basir $v_{1}, w_{1}, \ldots, v_{n}, w_{n}$ "Daiboux" s.t.

$$
\omega=\Sigma v_{i}^{*} \wedge w_{i}^{*}
$$

$$
\operatorname{Matrix}(\omega)=\left|\begin{array}{ccc}
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) & & 0 \tag{1}\\
& \left(\begin{array}{ll}
0 & -1 \\
1 & 0
\end{array}\right) \\
0 & & \ddots
\end{array}\right|
$$

Def $\left(M^{m}, \omega\right) \leftarrow$ symplecher mouibole

$$
\sum \frac{\frac{\text { symplectre form }}{\omega \in \Omega^{2}(M)}}{\frac{1}{2}}
$$

- $d \omega=0$
- co nou-deg: everg TpM is a s.v.s.
- $\omega^{\#}: T M \stackrel{\cong}{\leftrightarrows} T^{*} M$

$$
x \longmapsto i_{x} \omega
$$

- $\omega=\sum \omega_{i j} d x_{i 1} d x_{j} \leftarrow$ locelly

$$
\operatorname{dA}\left(\omega_{i j}\right) \neq 0
$$

Note $\Rightarrow \operatorname{dim} M=$ even $=2 x$

$$
\text { Non-dy } \Leftrightarrow w^{n} \neq 0
$$

Examples
-. (V,w) symplectic V.s

$$
\begin{aligned}
& \cong\left(\mathbb{R}^{2 n}, \omega_{s t}\right) ; \omega=\sum d p_{i} a d q_{i}=" d p \lambda d q " \\
& \left(P_{1}, \ldots, P_{n}, q_{1}, \cdots q_{n}\right) \\
& \text { - obviously } d^{\prime} w^{n} \neq 0
\end{aligned}
$$

Standard S.S. on $\mathbb{R}^{2 u}$

1. $\frac{\pi^{2 n}=\mathbb{R}^{2 n} / \mathbb{Z}^{2 n}}{p_{1}, \ldots q_{n} \bmod 1}$ soun forvulo

Or $\omega_{s t}$ is transl inv \Rightarrow descends to $\pi^{2 n}$
2. $\frac{M^{2} \text { orientoble suzfoe }}{2 \text { oriertbilila }}$ $\omega=$ aver form: $\omega \neq 0 \leftrightarrow$ wou. des

$$
d \omega=0-\operatorname{div} M=2
$$

can be assacioled with a R. metric
 couplex \quad, w nou.dy $\ll,\rangle_{\text {e nar.ls }}$

- $d \omega=0 \Leftrightarrow$ Kohlen

To be discussed in deteil latter
4. Cotengut burdles $\left\{\begin{array}{r}\text { tirst tine } \\ \text { confusing }\end{array}\right.$ $M=T^{*} Q$ corrtest a cononical s.f. constraction

$$
\begin{aligned}
& T_{q}^{*} Q \mid \nabla_{i} v \quad \pi: T^{*} Q \longrightarrow Q \\
& \begin{aligned}
\lambda_{p}(v)= & p\left(\bar{n}_{*}^{\pi} v\right) \\
\text { in } T_{p} T^{*} Q & T_{q}^{*} Q{ }_{q}^{*} T_{f} Q
\end{aligned} \\
& \pi_{*}(v) \Rightarrow \operatorname{bet} \lambda \in \Omega^{\prime}\left(T^{*} Q\right)
\end{aligned}
$$

By def: $\omega=d \lambda .\left(d^{2}=0 \Rightarrow d \omega=0\right)$
Non-degenevay - write λ is local wosliske Local esopvession

$$
\begin{aligned}
& \left\{\begin{array}{l}
q_{1}, \ldots, q_{n} \leftarrow \text { local coosd on } Q \\
p_{1}, \ldots, p_{n} \leftarrow " d u a l \text { coorl" }: \underbrace{T^{*} Q}_{\text {sil } b_{2}=s} \longrightarrow \mathbb{R}
\end{array}\right. \\
& \alpha=p_{1}(\alpha) d q_{2}+\ldots+p_{4}(\nu) d q_{n} \\
& \rightarrow \text { coord on } T^{*} Q \text { (shauld be } q_{i_{i}} \cdot \bar{u} \ldots \text {) }
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \lambda=\sum p_{i} d_{q_{i}} \tag{x}
\end{equation*}
$$

Then $w=\sum d p_{i} \wedge d q_{i}$
Rnk. $\mathbb{R}^{24}=T^{*} \mathbb{R}^{n}$
\Rightarrow non.degenevocy

Pf (4)
killod by M*

$$
\begin{aligned}
& v=\sum a_{i} \frac{\partial}{\partial q_{i}}+b_{i} \frac{\partial}{\partial p_{i}} \pi:(p, q) b \\
& \alpha=\sum p_{i} d_{q_{i}} \leftarrow d d \text { of } p_{i} \prime \prime s \\
& \pi_{*}(\sigma)=\sum a_{i} \frac{\partial}{\partial q_{i}} \\
& \underbrace{\lambda\left(\pi_{*} v\right)}_{\alpha(v)}
\end{aligned}
$$

$$
\pi:(p, q) \longmapsto q
$$

5. Twisted cotrugert buvdle

$$
(T^{*} Q, w=\underbrace{d \lambda}+a^{*} \sigma)
$$

$$
\text { stendord } \quad d \sigma=0
$$

$$
d w=d\left(d \lambda+\pi^{*} \sigma\right)=0 \quad<\quad \sigma
$$

Noudeg: $\quad \omega=\sum d p_{i} \quad \underset{q}{ } \quad d_{q i}+\sum_{i, j} \sigma_{i j} d q_{i} \wedge d_{q j}$

$$
p\left[\begin{array}{c|c}
p & q \\
q & -I \\
\hline-I & \sigma
\end{array}\right]<\begin{array}{ccc}
\text { nou-doy } & \text { wo } u \\
\text { whot } & \sigma & i s
\end{array}
$$

- Move examples later

Non-excuples
To admif a s.f. M los to be orientible:
ω syupl $\Rightarrow \underbrace{\omega^{4}}_{\text {orientstion } \omega^{4} \neq 0<\text { volume fovn" }}$

1 Cor. $S^{2 n \geqslant 4}$ does wot admit a syupl. Lovun
Pf: A ssume not: $[\omega]=0: \omega=d \lambda$

$$
\begin{aligned}
& \int_{M} \omega^{n}=\int_{M}(d \lambda)^{n}=\int_{M} d\left(\lambda \wedge(d \lambda)^{n-1}\right) \\
& \\
& =\int_{\partial M \neq 0} \lambda \wedge d \lambda^{n-1}=0
\end{aligned}
$$

$$
\text { Brt } \omega^{u} \neq 0 \Rightarrow \int_{M} \omega^{u} \neq 0<\begin{gathered}
\text { sigh } \\
\text { depers } \\
\text { orien }
\end{gathered}
$$ orienta

- Mave do follaw...
symplectomorphisms
- $\varphi^{\prime}:\left(M_{0}, \omega_{0}\right) \longrightarrow\left(M_{1}, \omega_{1}\right)$
$\left.\begin{array}{l}\text { is } \quad \text { syuplectic } \\ \text { if } \quad \varphi^{*} \omega_{1}=\omega_{0}\end{array}\right\} \Rightarrow \varphi$ is an immersios

$$
r k D y=\operatorname{dim} M_{0}
$$

$\Rightarrow: \operatorname{dim} M_{0}=\operatorname{dim} M_{1} \Rightarrow \varphi$ is a lifleal

- $\varphi:\left(M_{0}, \omega_{0}\right) \longrightarrow\left(M_{1}, \omega_{1}\right)$
is a syuplectomorphism
if φ is a diffed \& $\varphi^{*} \omega_{1}=\omega_{0}$
- Gnoup $\operatorname{Sympl}(M, \omega)<\operatorname{Diff}_{\omega^{w}}(M)$
syuplectonnorphism \Rightarrow vol preserving

$$
\varphi^{k} \omega_{1}^{h}=\omega_{0}^{n}
$$

Discussion: Cramovis thm
syuplectic vs volume preserving
\$2 Dorboux ard Mosez's thmes
Dorbonx: all syñglect forms (of the some dime) ave locally sywplectomorphie
Move rigorously
Thm (Doiboux) (M, $M^{2 m} \omega$) symplestic
介
\exists nitd. $v \rightarrow p$ ard a diffeo

$$
\begin{aligned}
& \varphi:(v, x) \\
& w=y^{*} w_{s t}
\end{aligned}
$$

Thm' (Doiboux) $\left(M_{0}^{2 \eta}, \omega_{0}\right) \&\left(M_{\psi^{2 n}}, \omega_{1}\right)$

$$
x_{0} \quad x_{i} \text { syoppl, }
$$

$$
\Rightarrow v_{0} \neq x_{0} \& v_{1} \Rightarrow x_{1} \text { and a diffeo }
$$

$$
\begin{aligned}
& y:\left(v_{1}, x_{1}\right) \rightarrow\left(\tau_{0}, x_{0}\right) \quad \text { s.l. } \\
& \omega_{1}=\varphi^{*} \omega_{0}
\end{aligned}
$$

PmL Coutrast w.it ditt geourluy: syupl stris are more tike dift ein'y

Pf Moseris boustopy method

- extremely important
- Result is local can assume

$$
M^{2 n}=\mathbb{R}^{2 n}, \quad x=0
$$

- Linear Dorbonx Theorem $\omega_{0}=\omega$ on $T_{0} \mathbb{R}^{4 h}=\mathbb{R}^{2 n}$ can be made standard by a lin transf.
- Consider

$$
\begin{aligned}
& \omega_{t}=(1-t) \omega_{0}+t \omega \\
& \text { - } \omega_{t} \text { at } 0 \text { is } \omega_{0} \Rightarrow \text { syupl on } \\
& \text { - } \omega_{0} \omega_{t} \omega_{1}=\omega
\end{aligned}
$$

- Looking for $\varphi_{t}: n h d j 0 \rightarrow u b d$ of 0

$$
\omega_{0}^{\top}=\varphi_{t}^{*} \omega_{t}
$$

Then φ_{1} does the job

- Ut is generated by the time dependent

$$
\text { vil. } v_{t}: \quad \frac{d}{d t} \varphi_{t}(x)=v_{t}\left(\varphi_{t}(x)\right)
$$

Discuss? at Digenton: isotopies, eke
Looking for $v_{t} \underset{\sim}{\sim} \varphi_{t}$ uniqueven and exioter. of solution of ODE

$$
\begin{aligned}
& \cdot \frac{d}{d t} \text { of } \varphi_{t}^{*} \omega_{t}^{*}=0 \\
& \varphi_{t}^{*} L_{v_{t}} \omega_{t}+\varphi_{t}^{*} \frac{d}{d t} \omega_{t}=0 \\
& \text { Apply }\left(\varphi_{t}^{*}\right)^{-1}: \quad L_{v_{t}} \omega_{t}+\frac{d}{d t} \omega_{t}=0
\end{aligned}
$$

$$
\begin{aligned}
& L_{v}^{\omega_{t}}=i_{v} d \omega_{t}+d i_{v_{t}} \omega_{t} \\
& (t) \Leftrightarrow d_{v} \omega_{t}=-\frac{d}{d t} \omega_{t}=\underbrace{(1-t) \omega_{0}+t \omega_{1}}_{d \lambda} \underbrace{}_{0 \text { Poircove }} \\
& \Leftrightarrow i_{v} \omega_{t}=\lambda \\
& \Leftrightarrow v_{t}=\left(\omega_{t}^{*}\right)^{-1} \lambda \leftarrow \text { Now-degenevocy }
\end{aligned}
$$

Nuave: need to know thet φ_{t} is detined for $t \in[0,1]$
\Leftrightarrow solutions of $\dot{x}=v_{t}(x)$ with initial conditions neer 0 exiot fa $[0,1]$
Does not follow automitioally fran exidenere \& uniquenens
From ODE's sutticiat to hue $v_{t}(0)=0$

$$
\leftarrow \lambda l_{0}=0
$$

Modify $\lambda: \lambda \mu \lambda-\lambda_{0}$

- linear extension -
Ruol. Stosk coctrast with Riemoncic geometyg: W cloes not hove local
- R.m. (syumetir tevsoss) do: cusvetuze

Extra discussion: time dependent v.f.

- v ind of time $n s \varphi^{t}$ flow

$$
\begin{aligned}
& \text { - } \varphi^{t_{1}+t_{2}}=\varphi^{t_{1}} \varphi^{t_{2}} \\
& \text { - } \varphi^{0}=i d
\end{aligned}
$$

$$
t \mapsto \varphi^{t}(x)=\text { sol of } \quad \dot{x}=v(x)
$$

$$
\text { with } \varphi^{0}(x)=x
$$

- v_{t} depends aa φ_{t} isotopy. ont

$$
\varphi_{0}=i d
$$

Construction: pan to $\tilde{M}=\mathbb{R} \times M$ ind of tim $\rightarrow \tilde{v}=\frac{\partial}{\partial t}+v_{t}$ flow $\tilde{\varphi}^{t}$ then $\tilde{\varphi}^{t}(0, x)=\left(t, \varphi_{t}(x)\right)$ or $t \rightarrow \varphi_{t}(x)$ Ra sol of $\dot{x}=\sigma_{t}(x)$ with t initial condition x all $t=0$

To be mose precite, incorporoling time:

$$
\begin{aligned}
& \varphi_{t_{1}}^{t_{2}} \varphi_{t_{0}}^{t_{1}}=\varphi_{t_{0}}^{t_{2}} \\
& \left.\frac{d}{d \tau} \varphi_{t}^{\tau}(x)\right|_{\tau=t}=v_{t}(x)
\end{aligned}
$$

We have hae $t_{0}=0 \quad \varphi^{t}=\varphi_{0}^{t}$

$$
\begin{aligned}
& \varphi_{t}^{\tau} \varphi^{t}=\varphi^{\tau} \\
\Rightarrow & \left(\varphi^{t}\right)^{*}=\left(\varphi^{t}\right)^{*}\left(\varphi_{t}^{\tau}\right)^{*} \\
\Rightarrow & \left.\frac{d}{d \tau}\left(\varphi^{\tau}\right)^{*} \alpha\right|_{\tau=t}=\left(\varphi^{t}\right)^{*} L_{v} \alpha
\end{aligned}
$$

Global Rigidity: Poser's throe's $\begin{aligned} & \text { Lecture } 3 \\ & 09130-21\end{aligned}$

- Volume form = non-vanisting top leg love
- E.g. $\quad \omega$ syuplectic $\Rightarrow \omega^{3}$ vol. form
- $\eta_{1} \& \eta_{0}$ vol. form $\eta=-\eta_{0}$
$f>0$: $1,8 \eta_{0}$ have the some sign $f<0$ —. - opposite signs
- Existence of a vol. form \Rightarrow orientebility
- $\quad \int_{M}: H^{m}(M) \stackrel{(R}{\leftrightarrows} \leftarrow \operatorname{Discu} N$
moser: total volume is the only inv
Tho (moser) M closed (orientoble) $\eta, \& \eta_{0}$ vol. forms and

$$
J_{M} \eta_{1}=\int_{M} \eta_{0} \Leftrightarrow \text { some sign) }
$$

Discus:
Local moses Lo Do y bour fa val torn
Earp by
cheat pR
$\Rightarrow \exists \varphi: M P$ difteo: $\eta_{0}=\varphi^{*} \eta_{0}$
pf set

$$
\begin{aligned}
& \eta_{t}=(1-t) \eta_{0}+t \eta_{,} \leftarrow \text { all volum forms } \\
&=\underbrace{(1-z+t f)}_{v} \eta_{0} \quad \text { same sign } \\
& \text { Discus }
\end{aligned}
$$

Note $\quad \int_{M} \eta_{t}=\operatorname{const} \Leftrightarrow\left[\eta_{t}\right]=\operatorname{cons} t$

As before: looking for $\varphi_{t} \leftarrow$ generated by J_{t}

$$
\begin{align*}
& \varphi_{t}^{*} \eta_{t}=\eta_{0} \\
& \frac{d}{d t}: \varphi_{t}^{*} \operatorname{lv}_{t} \eta_{t}+\varphi_{t}^{*} \frac{1}{d t} y_{t}=0 \\
& \underbrace{2 v_{t} \eta_{t}}_{t}=-\frac{d}{d t} \eta_{t}=\eta_{0}-\eta_{1}=d \lambda \\
& \operatorname{div}_{t} \eta_{t} \quad \int_{M}\left(\eta_{0}-\eta\right)=0 \text { Disuse } \\
& i_{t} \eta_{z}=\lambda \in \Omega^{n-1}(M) \tag{x}
\end{align*}
$$

Ex: linear alg

$\Rightarrow \exists!v_{t}$ solving (*)
M closed \Rightarrow the flow exists for $t \in[0,1]$, φ, clos the job

Rum. Rigidity in general: deforming a str results in an equivalent str. E.S. η_{t} family of vol. forms, M closed $\left[\eta_{t}\right]=$ canst $\Rightarrow \Rightarrow \varphi_{t}: \varphi_{t}^{*} \eta_{t}=\eta_{0}$
Difficulty! Hodge theory \rightarrow Dismiss

Similar rigidity for syuplectic forens But \exists somp complientions:
(l) ω_{1} \& ω_{0} symplectic on $M^{2 m}$湤 $\omega_{t}=(l-t) \omega_{0}+t \omega_{2}$ symplectic: sum of noy. dey motrices need not

Thm (mosen)

- $M^{2 n}, \omega_{t} \leftarrow$ family of sywyl. formi \uparrow closed
- $\left[\omega_{t}\right]=$ const !
$\Rightarrow 3 \quad \varphi: M P$ diffeo s.t.

$$
\varphi^{*} \omega_{p}=\omega_{0}
$$

On the pf: look for $\varphi_{t}^{*} \omega_{t}=\omega_{0}$

$$
\Leftarrow d \dot{v}_{v_{t}} \omega_{t}=-\dot{\omega}_{t}:=-\frac{d}{d t} \omega_{t}
$$

- $\left[\omega_{t}\right]=$ const \Rightarrow all $-\dot{\omega}_{t}$ exact discuiss: cucles \&
- Asbefor $-\dot{\omega}_{t}=d \lambda_{t} \quad \frac{d}{d t}[0]=\left[\frac{d}{d i} \cdot\right]$ $i_{\sigma_{t}} \omega_{t}=\lambda_{t} \Rightarrow \ldots$ as befove
(2) Need λ_{t} to be smasth (or contt) in t Not obviens at all. Hodge theory or de Rhom = Ceck

Cor (Local rigidity of sympl. foums) M elosed
ω_{0} syuplechr
Assume the to ω is $\frac{\text { sufficientlly elose }}{\text { to } \omega_{0}}$

$$
\begin{aligned}
\cdot[\omega] & =\left[\omega_{0}\right] \\
\Rightarrow 3 \varphi: M 』 \text { s.t. } \omega & =\varphi^{*} \omega_{0}
\end{aligned}
$$

Pf

$$
\omega_{t}=(1-t) \omega_{0}+t \omega_{1}
$$

- synpleibre
- $\left[\omega_{t}\right]=$ const $\Leftarrow\left\{\begin{array}{c}\text { Vany two } X, Y \\ \|X\|=\|Y\|=1 \\ \omega(X, Y) \approx \omega_{0}(X, Y)\end{array}\right.$

Apply Clobal mosor thm far syuplectir forms
§3. Hamiltonian Dynomies:
Definitions, Basic feets, Exauples 10/05-2021
$\left(M^{2 n}, \omega\right)$ syuplectic
. $H: \mathbb{R} \times M \longrightarrow \mathbb{R}$

- Hamiltonion t

$$
H(t, 0)=H_{t}
$$

- Antonomous if ind of $t: H: M \longrightarrow \mathbb{R}$
- Often 1 -periodic in $t, S^{\prime}=\mathbb{R} / \mathbb{Z}$
$H: S^{\prime \prime} \times M \longrightarrow \mathbb{R}$

$$
H_{z+i}=H
$$

Def. Hamietomian v.f. generated by H :

$$
i^{i} \omega=-d H \quad \exists!X_{H}-n o n-d e g
$$

- $_{\text {Dereudent }} X_{H} \leadsto \underbrace{\text { time-dependent tlow" }}_{\text {Botopy }}$
time dependent

Need not be difined for all t, and is not sometimes (collirious) but we will assume Et.s. (E.S. M is conject, ete)
Runl. Doing dynamin, usually interested in. $\varphi_{1}^{t}, t \in \mathbb{R}, M$ autonomons or $\varphi_{M}^{k T}, k \in \mathbb{N}, M$ time-depeklent

Exawoles
Ex 1. $\quad \mathbb{R}^{2 n}, \omega_{s t}=d p_{1} d q=\sum d p_{i} a d q_{i}$

$$
\left\{\begin{array}{l}
\dot{p}=-\frac{\partial H}{\partial q} \\
\dot{q}=\frac{\partial H}{\partial p}
\end{array} \Leftrightarrow X_{H}=-\frac{\partial H}{\partial q} \frac{\partial}{\partial p}+\frac{\partial H}{\partial p} \frac{\partial}{\partial q}\right.
$$

Checking $i_{x_{H}} \omega=-\frac{\partial H}{\partial q} d q-\frac{\partial H}{\partial p} d p=-d H$
Subexample $\mathbb{R}^{2 n}=T^{*} \mathbb{R}^{n}=\mathbb{R}^{n} \times \mathbb{R}^{k}$

$$
\begin{aligned}
& H=\frac{1}{2 m}\|p\|^{2}+V(q)=\text { kinehre }+ \text { potential } \\
& \left\{\begin{array}{l}
\left.\dot{p}=-\frac{\partial V}{\partial q} \Leftrightarrow \right\rvert\, \dot{q} \dot{q}=-\nabla V / \text { Nowions fonce } \\
\dot{q}=\frac{1}{2 m} p \Leftrightarrow p=m \dot{q} \text { \& momertom }
\end{array}\right.
\end{aligned}
$$

2. Cotengent bundle $M=T^{*} Q$, $\omega_{s t}$

$$
\begin{aligned}
& \text { Fix R.M. on } Q \quad T Q \leftrightarrow T^{2} Q \\
& \left.\langle,\rangle \quad v \leftrightarrow\left\langle v_{0}\right\rangle\right\rangle \\
& H=\frac{1}{2}\langle,\rangle: T+Q \longrightarrow \mathbb{R} \\
& \text { 子 }{ }^{9} \text { - } \\
& X_{H}=\text { glodeste sproy } \\
& \varphi_{M}^{t}=\text { geoderie flow } \\
& \text { Describe. }
\end{aligned}
$$

3. Twisted cotongent bundle

$$
H=\frac{1}{2}\langle,\rangle
$$

The flow gonverss the mokien of a chorge on Q in maquetic bield F.
Subexarple a) $Q=\mathbb{R}^{2}, \quad \sigma=B d q_{1} a d g_{2}$ $\underset{\text { cpoce }}{\operatorname{cont}} \rightarrow\left(q_{1}, q_{2}\right)^{\prime}$
\rightarrow nit charse, wit mass
$\vec{B} \perp\left(q_{1}, q_{2}\right)$ plane, chorge in $\mathbb{R}^{2}(x, y) \quad q_{1}, q_{2}=(x, y)$
H.E. $\Longleftrightarrow \quad \ddot{q}=B(q) J \dot{q} ; \quad J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
b) $Q=\mathbb{R}^{3}, \vec{B}=$ v.f. on $\mathbb{R}^{3} \leftarrow$ magn. Field

$$
\sigma=i_{\vec{B}} d q_{1} \wedge d q_{q_{2}} \wedge d q_{3}
$$

$$
d \sigma=0 \leftrightarrow \operatorname{div} B=0\} \begin{aligned}
& \text { Qne of tho } \\
& \text { mox well } \\
& \hline
\end{aligned}
$$

H.E. $\Leftrightarrow \quad \ddot{q}=\dot{q} \times \vec{B}(q)<$ Lorentzforce
(unit change, unit mois)

$$
\begin{aligned}
& M=T^{*} Q, \quad \omega=\omega_{s t}+\pi^{*} \sigma \\
& \downarrow \pi \text {, magnetor field } \\
& Q, \sigma, d \sigma=0
\end{aligned}
$$

Enevgy and w-couseration
Let φ_{M}^{t} be the Hom flow of H_{t}.
Prop
essential
(a) Enengy consernotion

Arsulue Hut H is autonomons. Then

$$
\left(\varphi_{H}^{t}\right)^{*} H=H: \quad H\left(Y_{H}^{t}(\rho)\right)=\text { wnst } \forall P
$$

(b) "Intequal invoriant": y_{n}^{t} is syuplectic

$$
\begin{aligned}
& \left(\varphi_{H}^{t}\right)^{*} \omega=\omega \\
& \sim_{H}^{\varphi_{H}^{t}} \sim_{n}^{\varphi_{H}^{t}(\Sigma)=\Sigma^{\prime}} \\
& \underbrace{i}_{i} \overbrace{\Sigma^{\prime}}^{\varphi_{n}} \int_{\Sigma^{\prime}}^{\omega}=\int_{\Sigma}^{\varphi_{k}(\Sigma)=\Sigma^{\prime}} \omega
\end{aligned}
$$

Cor. φ_{H}^{t} is vol. pueserving: $\left(Y_{H}^{t}\right)^{k} \omega^{k}=\omega^{k}$

$$
\begin{aligned}
\begin{aligned}
(T / / 1)_{v}
\end{aligned} & \rightarrow \underbrace{\varphi_{j}^{t}(v)}_{w^{4}}=\int_{v_{\mu}^{k}(v)}^{w^{k}}
\end{aligned}
$$

\Rightarrow Huse restrichies an dynomics

$$
\begin{align*}
& \text { Pf. (a) } \frac{d}{d t} H\left(\varphi_{H}^{t}(p)\right)=\left(L_{x_{H}} H\right)(\underbrace{\varphi_{M}^{t}(p)}_{x}) \\
& =\left(i_{x_{H}} d d H^{2}+d i_{x_{M}} d H\right)(\ldots) \\
& \text { p. } \mathrm{Ha} \\
& =d\left(-i_{x_{H}} i_{x_{H}} \omega\right)=d\left({ }_{\omega\left(x_{H}, x_{H}\right.}\right)=0 \\
& \text { ME: } \quad{ }^{\prime} X_{H} \mathrm{CO}=-d H \tag{19}
\end{align*}
$$

(b)

$$
\begin{aligned}
& \frac{d}{d t}\left(\varphi_{H}^{t}\right)^{*} \omega=\left(\varphi_{H}^{t}\right)^{*} L_{x_{H}} \omega \sec p / 1 a \\
= & \left(\varphi_{H}^{t}\right)^{*}\left(d^{i} x_{H} \omega+i_{x_{H}} d \omega\right) \\
= & \left(\varphi_{H}^{t}\right)^{*} \underbrace{d(-d H)}_{H E}=0
\end{aligned}
$$

Ex. Prove the Prop usin a direct calculatior in Durboux coordivates.
Con $\operatorname{div} M=2 \leftarrow$ scifoce H auto no mons
\Rightarrow integral enzves of y_{1+}^{t} (unporaruatisid) "ave" leves $H=$ coust.
"alg equectio"

Romk Newtonicn mechonics:

- $\ddot{q}=F(q)$ Energy consu $\leftrightarrows\left\{\begin{array}{l}F \text { is conso: } \\ F=-\nabla V=i n d\end{array}\right.$
- $\ddot{q}=F(q, \dot{q})$ as in Loventz

$$
\text { Euergy couservetion } \Leftarrow F \perp \dot{q}
$$

Contiuning Exanples
4. Investigating the pendulum

$$
M=T^{*} S^{1}=\mathbb{R} \times S_{q}^{1}
$$

$$
\text { on } \mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}
$$

$$
p q
$$

$$
H=\frac{1}{2}|p|^{2}-\cos q+1
$$

Phase pertrait:

$$
=\underbrace{\frac{1}{2}\left(p^{2}+q^{2}\right)+\cdots}
$$

Harmone

Givesthu behevior of integral cuives up to poramehizotia
Fusther details - Ex (Not easy)
(a) $q \in(0, \pi) \quad H(0, q)=\cos q-1=h$
pintegral urve thvough $(9,0)$ is $\{H=h$?
$T(h)$ its period

- Show thit $T(h)$ monatone incress function frem 2π to $\infty_{h=0}$ as $h \rightarrow 2$
$\binom{$ Compare with the havmonic oscillohe }{$H=\frac{1}{2}\left(p^{2}+q^{2}\right) \& T=$ coust }
- Find th Taglor exp of $T(h)$ et $k=0$
(b) Consider $D Y_{H}^{\top}: T_{x} \mathbb{R}^{2} ?$
thow that $D_{\varphi_{H}^{\top}}^{H}=\left(\begin{array}{ll}1 & \lambda \\ 0 & 1\end{array}\right) \neq 0$
(c) Find explicilly $\varphi_{M}^{t}(0,2)$ in elpmanterg feuchous
Ex Hint to a): Aven-periad velction $H: \mathbb{R}^{2} \rightarrow \mathbb{R}$ proper
- $\{H \leqslant h\}$ counceted
- h - vegulon

$$
\begin{aligned}
& h-\text { vegulen } \\
& A(h)=\text { aver of }\{H s h\}=\int_{H} w \\
& T(h)=\text { period of }\{H=h\}
\end{aligned}
$$

show that $\quad \frac{d A}{d h}=T(h)$
5. Positivi-Def quadrotic Hom lecture 5 10/07-2021

$$
\begin{gathered}
\mathbb{R}^{2 n}=\mathbb{C}^{n} \quad z_{j}=p_{j}+i q_{j} \quad, \quad z=\left(z_{1}, z_{n}\right) \\
H=\frac{1}{2} \sum \lambda_{j}\left(p_{j}^{2}+q_{j}^{2}\right)=\frac{1}{2} \sum \lambda_{j}\left|z_{j}\right|^{2} \\
{ }_{0} \text { or }{ }^{j u s t} \neq 0
\end{gathered}
$$

Gouverus n uncoupled osiillators with frequecies λ_{j}.
$E=\{H=h\}$ is an ellipsoid

- Find X_{n} and
showithet $\varphi_{H}^{t}(z)=\left(e^{\lambda_{1} i t} z_{1}, \ldots, e^{\lambda_{n} i t} z_{n}\right)$
- "Coordinte axi" ($0, \ldots, Z_{j}, 0, \ldots 0$) $\cap E$ ave pertodr orbib of φ_{M}^{t} with $T_{j}=\frac{2 \pi}{\lambda_{j}}$
- Avechare oftor peciodor obits? (The answer depends on $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.)

6. Linear HE
$H: U \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ quadratic form

$$
\begin{aligned}
& H(x)=\frac{1}{2}\langle A x, x\rangle, \quad A^{T}=A \\
& A=\nabla H
\end{aligned}
$$

HE:

$$
\dot{x}=J \nabla H(x)=J A x=X_{H}(x)
$$

$$
\varphi_{H}^{t}(x)=\exp (-L J A) x \quad \begin{aligned}
& \text { Disuses a bit } \\
& \text { Lie alg\& Liegps }
\end{aligned}
$$

$$
\text { exp: } \operatorname{sp}(2 n) \longrightarrow \operatorname{sp}(2 n)
$$

$$
x_{H} \longmapsto \varphi_{H}
$$

$$
\begin{align*}
\operatorname{sp}(2 n) & =\text { lin Ham } v . f: x J+J X^{\top}=0 \\
& =\text { quadrature fovius on } \mathbb{R}^{2 n} \\
& \longrightarrow M=-\frac{1}{2}\langle J X x, x\rangle \tag{24}
\end{align*}
$$

$$
\begin{aligned}
& M=\mathbb{R}^{2 n}, \quad \omega=\omega_{s t}=d p_{a} d q \\
& =\mathbb{P}^{k} \text { Matrix of } \omega \text { : }
\end{aligned}
$$

Normal forms
Discurse lineon alg $\operatorname{sp}(2 n) \operatorname{spc}(2 n)$

- Solving ODE'S: $\dot{x}=P_{x}$ vs SL

Bring A to a Jordan form $\quad\left(P P^{\top}=J\right.$ to calurlote $\exp (P t) x \quad S_{P \in S_{p}(2 n)}$

- symplectir normal forms are more compliceted

Q sunmetric
$\operatorname{SQS}_{\mathrm{n}} \mathrm{S}^{\top} \leadsto \operatorname{diag}(1, \ldots, 1,0 \ldots 0)$
GL(n)

$$
\begin{aligned}
& S Q S^{T} \leadsto \operatorname{diog}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \\
& \hat{O}(n)
\end{aligned}
$$

SQS $^{T} \leadsto$ much une couplicoled
$\operatorname{Sp}(2 n) \quad$ Not just $\sum \lambda_{j}\left|z_{j}\right|^{2}$
Runh. Vrless $A>0$, then it con be dragovalized'

Time - change
$H: \mathbb{R} \times M \rightarrow \mathbb{R}$
$\lambda: \mathbb{R} \rightarrow \mathbb{R}$
time-chavy

Lecture 6

$$
10 / 92-2021
$$

Mamiltonian
Does not hove to be bat usually is
set $K_{t}(x)=\lambda^{\prime}(4) H_{\lambda(t)}(x)$
Ex. show that $\varphi_{k}^{t}=\varphi_{H}^{\lambda(t)}$
Ex. .) $\lambda(t)=T \cdot t: \quad K=T H_{T t}$
$\Rightarrow \varphi_{K}^{\prime}=\varphi_{M}^{\top}: \quad$ looking at $\varphi_{\text {always assume }} \quad \begin{aligned} & \text { Hot }\end{aligned}$

$$
T=1
$$

2) $\Delta+\frac{1}{\lambda} \underbrace{i \cdots}_{i t}$

$$
\varphi_{k}^{\prime}=\varphi_{n}^{\prime}
$$

but
$K \equiv 0$ when when $t \approx 08$ \& $t \approx 1$
\Rightarrow Looking at φ_{H}^{k} con always assume H is L-periodic is time $H_{t+1}=H_{t}$

- 4 Relevont Guonps:

Ham v.S. Syup
Ded. $\varphi_{H}=\varphi_{H}^{\prime}$ is called a Hamilbonion dittro
Rums. Can assume thent M is L-perioder in t

- Gn replace 1 by anything
- Mamilbo wion \Rightarrow Sywplectir:

$$
\varphi^{*} \omega=\omega
$$

- when m is not congact, need do assume smith alout H at ∞ We'll useally arnume the M is compectly supported $\Rightarrow \operatorname{supp} \varphi$ ir conped芙

Prop The collection of Hom difteors

$$
\operatorname{Mam}=\operatorname{Ham}(M, w) \text { is a gs. }
$$

$\frac{R_{m} l}{\text { Not obuious: } t l \text { is not autonowors }}$

$$
\left(\varphi_{H}^{t}\right)^{-1} \neq \varphi_{M}^{-t}
$$

and it., not clea why

$$
\varphi_{H}^{t} \varphi_{k}^{t} \text { is Mamillonian }
$$

Focus on the product:
Pf 1. Consider $\left.\begin{array}{rl}H_{t}, & t \in[0,1] \\ & K_{t-1},\end{array}\right\} F_{t}$
smooth in t when soy
$H_{2} \equiv 0$ for $t \approx 1$ con be chimed $K_{t} \equiv 0$ far $\left.t \approx 0\right\}$ by bimechos
Then F_{t} geneveles
φ_{M}^{t} Lon $t \in[0,1]$

$$
\begin{aligned}
& \varphi_{M}^{t} \text { for } t \in[0,1] \\
& \varphi_{K}^{t-1} \varphi_{M}^{\prime} \text { for } t \in[1,2] \text { id } \varphi_{K}^{\prime} \varphi_{K}^{l}
\end{aligned}
$$

So over $t \in\left[0,2 J\right.$ it gereveras $Y_{k}^{\prime} Y_{H}^{\prime}$
$\Rightarrow \operatorname{Ham}(M, \omega)$ is cloned under the product
Ex: geverale $\left(\varphi_{H}^{\prime}\right)^{-1}$ ss
P\&2-Ex

- $\varphi_{K}^{t} \varphi_{H}^{t}$ is generated by $K_{t}+H_{t} \circ\left(\varphi_{A}^{t}\right)^{-1}$
$\cdot\left(\varphi_{H}^{t}\right)^{-1}-\cdots-\cdot-H_{t} \circ\left(\varphi_{H}^{t}\right)^{-1}-4$

On the level of Lie algebras: vector heels Ham c Symp.
ξ Disuse int ail

Con $H^{\prime}=0 \Rightarrow$ Syrup. of $=$ How. v. .J.

Ex. Shifts of π^{2}

$$
\begin{aligned}
& \pi^{2}=\mathbb{R}^{2} \mathbb{Z}^{2} \quad(x, y)^{4} \cos 2 d i n o t{ }^{41} \\
& \varphi:(x, y) \rightarrow(x+a, y) \quad \omega=d x n d y
\end{aligned}
$$

conevoted by $X=a \frac{\partial}{\partial x}, y=\varphi^{\prime}$
Symplectic but not haimiltonian:
$i_{x} \omega=a d y$ closed but not exact
$\Rightarrow \quad \varphi \& \mathrm{Ham}$
what $f \Rightarrow$ some other φ_{H}^{t} from id to φ ?

id
E.g. $a=1, \varphi=i d$ by $x=\frac{\partial}{\partial x} \neq 0$
But en blk $M=0$

In fact, in this case φk Ham and \quad Sympor $/ \operatorname{Ham}=H^{\prime}\left(\pi^{2}, \mathbb{R}\right) / H^{\prime}\left(\pi_{j}^{2}, \mathbb{Z}\right)$

$$
=\mathbb{R}^{2} / \mathbb{Z}^{2}
$$

$$
=\pi^{2}
$$

Non obvious: flux, et
Mabuf-Sola mon

Note: Mam v.f. $=\underbrace{C^{\infty}(M)} / \mathbb{R}$ intmu
Lie algebra with cuter Paisa brocket

$$
\{H, k\}:=\omega\left(X_{+1}, X_{k}\right)=-\operatorname{dH}\left(X_{k}\right)
$$

Ex. Check th Jacobi id

- Prove Hut

$$
H \mapsto X_{H}
$$

is a Lir alg homo: $\{H, k\} \mapsto\left[X_{H}, X_{2}\right]$

$$
c^{\infty}(M) \longrightarrow \text { Haw. v.f. }
$$

- For $\mathbb{R}^{2 k}$

$$
\left\{\begin{array}{c}
\text { quodvolve } \\
\text { form }
\end{array}\right\} \stackrel{\cong}{\cong} s p(2 n)
$$

§5 $\frac{\text { Submanifolds of }}{\text { symplectir monifolds }} \frac{\text { Lecture } 7}{10 / 14-2021}$
Lineer algebras
$\left(v^{2 n}, \omega\right)$ syuplectie v.s.: $\mathbb{R}^{2 n}=\mathbb{P}^{n}, i=J$
$L \subset V$ limer subspace, $d=\operatorname{dim} L$
Def synplettre orthogowes

$$
L^{\omega}=\{x \in V \mid \omega(X, Y)=0 \quad \forall Y \in L\}
$$

Obvious properties

$$
\text { - } \operatorname{dim}^{L^{w}} L^{\omega}=2 n-d \quad \text { mostimporent }
$$

Det. L is isotrapic if

$$
\left.L \subset L^{w} \Leftrightarrow \omega\right|_{L}=0 \quad \Rightarrow d \leqslant n
$$

- L is coisotropir if

$$
L^{\omega} \subset L \quad L^{1} \quad \Rightarrow d \geqslant n
$$

- L is Laquaryian of

$$
L=L^{\omega}(\cos s \text { \& iso) } \quad \Rightarrow d=h
$$

- L is symplectir if
$\left.{ }^{\omega}\right)_{L}$ is vonedy $\Leftrightarrow L^{\omega} n L=0$

Ex. - $\operatorname{dim} L=1 \Rightarrow$ isotropir

- Bódirm $L=1 \Rightarrow$ coisohropic
- $L \subset \mathbb{C}^{n}$ couplex \Rightarrow syuplects

$$
J L=L \nLeftarrow
$$

- LLagr $\Rightarrow L$ is real: JLnL $=0$

Prap Given $L \Rightarrow$
3 Doiboux basis $e_{1}, f_{1}, \ldots, e_{n}, f_{n}$ s.t.

- L isotropric: $L=\operatorname{spon}\left(e_{1}, e_{2}, \ldots e d\right)$
- L coiso: $L=\operatorname{span}\left(l_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{k}\right)$
- Lagr: $L=\operatorname{spon}\left(e_{1}, \ldots, e_{4}\right)$
- L sympl: $L=\operatorname{spon}\left(e_{1}, f_{1}, \ldots, e_{k}, f_{k}\right)$

Con All Lagr. subsapees a conj. by $\operatorname{Sp}(2 n)$ (Lituwise for other types with d fixed)
Rme. $V=L \Theta L^{\prime} \leftarrow$ Lagn

$$
\left.\Rightarrow L^{\prime} \cong L^{*} \underset{\left.i_{x} \omega\right|_{L}}{ }\right\} \Rightarrow V=T^{*} L=L x L^{*}
$$

Ex. L coisshopir $\supset L^{\omega}$
L/L" syuplectic: $\omega_{\text {rel }}$

$$
\omega_{\text {ved }}(x, y)=\omega(\underbrace{\tilde{x}, \tilde{y}}) \text { lifts }
$$

Mou genevally: L/LnLw is syuplectic

Lagr. Grassmonnian

$$
\Lambda=\left\{\operatorname{Lc} \mathbb{R}^{2 n} \mid \operatorname{Lagr}\right\}
$$

$$
\mathbb{R}^{2 n}=\mathbb{C}^{4}
$$

A manifold
\mathbb{R}^{n} Discurs first Gresmennions
chorts:

$$
L \oplus L^{\prime}=\mathbb{R}^{2 n} \text {-fixed }
$$

Thran some collechic l.g. ceurdinote sebspaus

$$
\begin{aligned}
& u=U_{L, L^{\prime}}=\left\{Y \not \subset L^{\prime} \mid Y \operatorname{Lagr}\right\} \\
& Y=\operatorname{Cvaph}\left(P: L \rightarrow L^{\prime}=L^{*}\right)
\end{aligned}
$$

$\left\{P: L \rightarrow L^{*}\right\rangle \leftrightarrow\{$ biliner foum β on $L\}$

$$
P \longleftrightarrow(x, y) \mapsto P(x)(y)=\beta
$$

Y Lagr $\Leftrightarrow \beta$ is symmctric
$U_{L, L} \leftrightarrow$ quadratic forms on L (symmetre motrices)

$$
\Rightarrow \operatorname{dim} \Lambda=\frac{n(n+1)}{2}
$$

Digression:
complex \& symplechic V.Ses
Lecture 8

$$
10 / 19-2021
$$

Complex str: V real V.s

$$
J: V \rightarrow V, \quad J^{2}=-I
$$

Then $(a+i b) v=a+b J v$
Coviplex linear mops: $A: V \cap: J A=A J$
Ex: A: VD couplex liver

$$
\Rightarrow A \text { is } \mathbb{R} \text {-linear }
$$

Prove that $\operatorname{det}_{\mathbb{R}} A_{\mathbb{R}}=\left|\operatorname{det}_{\mathbb{C}} A\right|^{2}$
Con: $\cdot G L(n, \mathbb{C}) \subset \underbrace{G L^{+}(2 n, \mathbb{R})}_{\operatorname{det}>0}$ ovientohion pres

- $U(n) \subset O(2 n)$

Complexificolim: $\quad V=W \otimes \mathbb{C}$

$$
\text { W real v.s. } \quad V=W_{C}=V \oplus V \curvearrowright J \text { \} cuplex }
$$

$$
J(x, y)=(-y, x)\}
$$

But it also her an extra sir conjugation: $\quad(x, y) \mapsto(x,-y)$

$$
\begin{equation*}
e_{1, \ldots,} e_{n} \text { basis in } W \Rightarrow \text { also } o \text { bare } \tag{35}
\end{equation*}
$$

Functorial

- $A: W \rightarrow W \Rightarrow A_{c}: V \rightarrow A$
\mathbb{R}-livea \mathbb{e}-linees
seme malrix
- innes product \Rightarrow Hermihian product
a W
on V

$$
\Rightarrow \quad \theta(n) \subset V(n) \text { and } O(n)=V(n) \cap G L(n, 1 R)
$$

Symplectiv v.s. Hermitian
(v, ω) symplectic v.s.
J couplex str.
$\omega \& J$ are compotible if
Ex J always

$$
\text { 1) } \omega(x, J x) \geqslant 0 \quad x \neq 0
$$

2) $J \in S p(V, \omega)$
$\Leftrightarrow\langle X, Y\rangle=\omega(X, J Y)$ is an inner produt and $J \in O(V,\langle\rangle$,

$$
\Leftrightarrow \quad\langle x, Y\rangle_{\mathbb{C}}=\langle x, y\rangle+i \omega(x, y)
$$

is o Hermilion inuer prodect

- LeV Lagrangiar, J coupchible witl w

$$
\begin{aligned}
\Rightarrow & J L \cap L=\{0\} \\
V= & L \otimes \mathbb{C} \\
& A \subset O(L) \Rightarrow A_{\mathbb{C}} \in U(V)
\end{aligned}
$$

uninor generalizotier
$\Rightarrow U(n)$ acts trousitively on 1

$$
\underbrace{e_{1, \ldots, e_{n}}^{L} \xrightarrow[\sim]{L^{\prime}} \xrightarrow{L^{\prime}} \underbrace{e_{1}^{\prime}, \ldots, e_{n}^{\prime}}_{\text {owthogone }}}_{\text {outhogovel }}
$$

Then $\quad A_{c}: \quad V=L \circledast \mathbb{C} \rightarrow L^{\prime} \otimes \mathbb{C}=V$ is unitery

And Stoh $(L) \subset U(n)$ is $O(n)$

$$
\Rightarrow \quad=v(n) \cap G L(n, \mathbb{R})
$$

Ex. $\Lambda=U(n) / O(n) \leftarrow$ Explain

$$
\begin{gathered}
\cdot \pi_{1}(\lambda) \xrightarrow{\sim} \mathbb{Z} \leftarrow \text { "Maslon class" } \\
A \longmapsto \operatorname{det}_{\mathbb{C}}(A) \\
\cdot H_{1}(\lambda) \rightarrow \mathbb{Z}: \text { Masln } \in H^{\prime}(\lambda ; \mathbb{Z})
\end{gathered}
$$

Ex. $\quad \Lambda_{1}=\mathbb{R} P^{\prime}={ }_{i} 1$ outisodal,

$$
\begin{align*}
& \Lambda_{1}=\mathbb{R} P=\$ \tag{37}\\
& \Lambda_{2}=\$^{1} \times S^{2} / \sim \text { in both foctors }
\end{align*}
$$

Back to symplectic moniflds

$$
\left(M^{2 n}, w\right)>L
$$

De. L Lagr (iso, coiso, syupl) if

$$
T_{x} L \subset T_{x} M \text { is Lagr (iso...) } V x \in L
$$

Ex. $\operatorname{dim} L=1 \Rightarrow$ iso

$$
\operatorname{codin} L=1(\text { hyperserifue }) \Rightarrow \text { coiso }
$$

Focus an Lago. subucnifolds
$E \times 1 \cdot M=T^{*} Q \rightarrow Q$

$$
\begin{aligned}
& \alpha \in \Omega^{\prime}(Q)=\text { section of } T^{*} Q \\
& \Rightarrow \quad L_{\alpha} \subset T^{*} Q
\end{aligned}
$$

 $d \alpha=0 \Leftrightarrow L_{\alpha}$ Lagr
Pf

$$
\alpha=\left.\lambda\right|_{L_{\alpha}=Q}
$$

$$
\omega=\left.d \lambda \quad d \lambda\right|_{L}=0 \Leftrightarrow d \alpha=0
$$

On if you wiole

$$
\begin{align*}
& \psi: Q \\
& x \mapsto T^{\lambda} Q \\
& \Psi^{*} \lambda=\alpha \\
& \left.\quad d \lambda\right|_{L_{\alpha}}=0 \Leftrightarrow \psi^{*} d \lambda=0 \tag{38}\\
&
\end{aligned} \begin{aligned}
\psi d \alpha=0
\end{align*}
$$

Ex2
$\omega: M \times M,(\underbrace{(-\omega, \omega))}_{\tilde{\omega}}$
$\varphi: M$
$L=\Gamma_{\varphi} \subset W$, the grapk of φ

$$
L=\{(x, \varphi(x)) \mid x \in M\}
$$

Claim:
Γ_{φ} Lagr $\Leftrightarrow \varphi$ is syrplectic

$$
\varphi^{*} \omega=\omega
$$

Pf Identify $\Psi: M \rightarrow \Gamma_{\varphi}$

$$
2 \mapsto(x, \varphi(x))
$$

$$
\begin{aligned}
\left.\tilde{\omega}\right|_{p_{\varphi}}=0 & \Leftrightarrow \varphi^{*} \omega=0 \\
& \Leftrightarrow-\omega+\varphi^{*} \omega=0 \\
& \Leftrightarrow \varphi^{*} \omega=\omega
\end{aligned}
$$

Thm (Weiustein's tabular ubd)
Lecture 9
10/21-2201

$\Rightarrow \exists$ whds voi(L) \& v'o $L^{\prime}(L)$ s.t. $(U, i(L)) \&\left(U^{\prime}, i^{\prime}(L)\right)$ are symplectoo..

$\stackrel{\text { clood }}{\longrightarrow} M$ Lagr. enbedding
\Rightarrow nide of L is sybulectomespluic to a whd $L \subset T^{*} L$

$$
T^{*} L
$$

$$
L \subset M
$$

Discuce the tubulur whd thm?

On the pf: similen to Derboux
LCM Lagr. closel

- Preliminong (hin. alg)
N_{L} normal budle: N_{L} GTL $=T_{L} M$ can be chosen Lagr

$$
N_{L} \cong T^{*} L
$$

Now use ondinory tubular ahd thm Disues
to identity a und of $L \subset M$ with a uhd of L in $T^{*} L$

$$
U=\left(\text { nhd of } L \text { in } M \cong \text { nhd of } L \text { in } T^{*} L\right)
$$

$\Rightarrow v<$ nidd of L in $T^{x} L$ $\omega_{0} \& \omega_{1}$ two symplectio forms s.t. L is Lagr for both and by coustruction

- Set $\omega_{t}=(1-t) \omega_{0}+t \omega_{1}$

Run the homotopy method

$$
\begin{aligned}
& x_{t}: \quad i_{t} \omega_{t}=\lambda \quad \underbrace{d \lambda=\omega_{0}-\omega_{1}}_{\text {eviobs }} \\
& H^{2}(v) \cong H^{2}(L) \\
& {\left[\omega_{0}-\omega_{1}\right] \leftrightarrow\left[\left.\omega_{0}\right|_{L}-\left.\omega_{1}\right|_{L}\right]}
\end{aligned}
$$

Nuance: ${ }^{\nabla}$
Need $\lambda=0$ at every β of L (To moke sure $\varphi_{t} i$ defined for $\left.t \in[0,1]\right)$
Not only $\left.\lambda\right|_{L}=0$

Ex: Such λ exists by (x) Mot obvious

Lagr. scbmonitolds of $\mathbb{R}^{2 n}$ Lectune 10
10/26-2021
Imporlat quation in syppl topology some simple observetions

- $S^{\prime} c \mathbb{R}^{2}$ Lago

$$
\pi^{n}=\$^{\prime} \times \ldots \times \$^{\prime} \hookrightarrow \mathbb{R}^{2 n}
$$

A lot of different (non-equivalut)

$$
\omega_{s t} d \lambda, \lambda=\frac{1}{2} \sum\left(p_{i} d q_{i}-q_{i} \cdot d p_{i}\right)
$$

$\left.\lambda\right|_{\pi^{n}}$ closed $\left[\left.\lambda\right|_{\pi^{n}}\right] \in H^{\prime}\left(T^{n} ; \mathbb{R}\right)$ inv

- Prop $L \subset \mathbb{R}^{2 n}$ closel Lagn

$$
\Rightarrow \quad x(L)=0
$$

Pf. $N_{L}=T^{*} L \Rightarrow L \cdot L=x(L)$
But $L \cdot L=0$ l.g. becauxe $[L]=0$

$$
\text { in } \mathbb{R}^{2 n}
$$

or by deformaion Enveriance
Cor. $\sum_{g \neq 1}$ doss ust advit Lagr. embeddings into \mathbb{R}^{4} Lionville clan
Rul. 3 much mou/subtle zeruth
E.g. $L \subset \mathbb{R}^{2 n} \operatorname{Lag} \sqrt{2} \Rightarrow H^{\prime}(L ; R) \neq 0$

In foct $\left[\lambda l_{L}\right] \neq 0$ (Gromov)
$\Rightarrow \3 cloes hove Lagr. endoldiny ith in ${ }^{6}$

Maslov clans
$L \leftrightarrow \mathbb{R}^{2 n}$ Lagn, immersed, clooid

$$
\begin{aligned}
& \begin{aligned}
\Rightarrow G: & L \rightarrow \Lambda \\
& x \mapsto T_{x} L
\end{aligned} \leftarrow \text { Gawn mep } \\
& \mu \in H^{\prime}(\lambda ; \mathbb{Z}) \text { Maslov } \\
& \begin{aligned}
\|_{L} \in H^{\prime}(L ; \mathbb{Z}) & \leftarrow \text { Mesion clas } \\
& \text { of } L .
\end{aligned} \\
& \sigma^{*} \mu
\end{aligned}
$$

Ex. L ocientable $\Rightarrow \mu_{L}$ is even
Fait (Covomov) $L \subset \mathbb{R}^{2 h}$ ewbelded

$$
\Rightarrow M_{L} \neq 0 \Rightarrow H^{\prime} \neq 0
$$

$\Rightarrow d^{3}$ does not heve a Lagr. ens
Runk. μ_{L} ean olso be ditined for $L \subset T^{*} Q$ (but it con be 0)
\$6 Contact manifolds
Contact str $=$ old - dim sister of syupl str
$M^{2 n+1} \leftarrow$ old dimensional
Def. $\alpha \in \Omega^{\prime}(M)$ is contact it

- $\xi=\operatorname{ker} \alpha$ is a confect str
strictly speokity: a codim-1 distr ξ is convect 1 locally $\xi=\operatorname{ker} 2$ con be wade globally $\Leftrightarrow \xi$ is cosrinected
Note: α confect $\Rightarrow f \alpha$ content

$$
\begin{align*}
& (f \alpha) \wedge\left[d\left(f_{\alpha}\right)\right]^{n} \quad 0^{n} \text { s. } \\
& =(f \alpha) \wedge\left[d f_{\wedge \alpha}+f_{d \alpha}\right]^{n} \text { some en. } \\
& \alpha^{2}=0 f^{n+1} \alpha \wedge(d \alpha)^{n}
\end{align*}
$$

Some eorbect

$$
\begin{aligned}
& \alpha_{n}(d \alpha)^{n} \neq 0 \stackrel{\operatorname{val} . \text { forms }}{\Leftrightarrow}
\end{aligned}
$$

Con $M^{2 n+1}$ admits a correct $s h \sim$ (not necesoilly coozienteble) and $n+1$ ever $\Rightarrow M$ is orientoble
Ded-foct α coutect form \Rightarrow J! v.f. R Reeb v.f:

$$
\begin{aligned}
& \alpha(R)=1 \\
& i_{R} d \alpha=0
\end{aligned}
$$

In fect α contect

$$
\Leftrightarrow\left\{\begin{array}{l}
\operatorname{ken}(d \alpha) \\
k \operatorname{le} d \alpha \notin \underbrace{1-d i m} \\
\operatorname{kev} d \alpha \\
\underbrace{\operatorname{kev} \alpha}_{\xi}
\end{array}\right.
$$

$$
\xi=\operatorname{Lev} \alpha
$$

Reeb v. \int. \leadsto Reeb flow

Examples
Ex1. $\mathbb{R}^{2 n+1}(p, q, z)$
$\alpha=d z+p d q$ or $d z+\frac{1}{2}(p d q-q d p)$ ove conbect: st. condect fonn a $\mathbb{R}^{2 n+1}$ $R=\frac{\partial}{\partial z}$ The st. Contart foom or shr. os $\mathbb{R}^{2 n+1}$
Visualize $n=1 \quad \xrightarrow{\text { T }}$

$$
\begin{aligned}
& \text { More generally } \quad M=\mathbb{R}_{z} \times w=w=d x \\
& \alpha=d z+\bar{D}^{*} \lambda
\end{aligned}
$$

Ex2

$$
\alpha=d z+\bar{n}^{*} \lambda
$$

contect

$$
\Sigma \subset \mathbb{R}^{2 n}, \quad \Sigma=\partial(\text { storshepped) }
$$

l.g. convéx

$$
\lambda=\frac{1}{2}(p d q-q d p)
$$

Mokivohive
$\alpha=\lambda I_{\Sigma}$ is cordect Mam dynomies unit normel

- $R=J N_{\Sigma} \leftarrow$ normal
- $\Sigma=\{H=$ const $\} \leftarrow$ reg

Then $R=f X_{H}$ on Σ

Move generally
becth2e 11

$$
10 / 28-2021
$$

$$
\Sigma^{2 n-1} c\left(M^{2 n}, \omega\right) \text { synglecto }
$$

Def. Σ hes confoct type if $\left.\omega\right|_{\Sigma}$ has a coutect privicitive α :

$$
d \alpha=\left.\omega\right|_{\Sigma}, \quad \alpha_{n}(d \alpha)^{n-1} \neq 0
$$

Them: $\quad \Sigma=\{H=$ const $\} \leftarrow$ regulon

$$
\Rightarrow R=f x_{t 1} \text { on } \Sigma
$$

Rml. Not every cloord hyperssaper in $1 R^{2 k}$ has coulect type
Ex-Weinstein: two spheres
Ex3 $\sum<T * Q$ fiberwise storshopped $\lambda=p d q$ Lionville form Motivikion: $\alpha=\left.\lambda\right|_{\Sigma}$ is coutect geonchic optics
Σ fiberwise convex: Finsler metric Reeb flaw $=$ Finsper geodesik flaw

Ex4-Foct every cbored oriertable
3-monipold admibs a corlecti structus necesay
Existene of conked str." Discuss ik wre deteil? conotoct topoloso

Contect Dorboux 7 hm ard all thet

Thm (louloct Darboux)
Aby two cablect forms (fixel diu) aple locally diffeomorphic
Thu' (coubet D..boux)
Any contect form in $\operatorname{dim}=2 n+1$ is locally diffee to the standard contest form on $\mathbb{R}^{2 k+1}: \geq \cos d p_{i} q, z$ such det $\alpha=d z+p l q$
Two ways to prove:

1) As a consequera of syuplectic Dorboux - EX

$$
\left.d \alpha\right|_{N}=\text { symylectic }
$$

$$
=d\left(\frac{p l y}{\lambda}\right)
$$

atom
" 2 = time of Reeb flow hrom $N+f^{0}$
2) Use moser's homotopy methoud directly

Rum No global version for coutect forws
M, α_{t} a femily of cartect forms connot expent α_{s} to be diffeco to each oflor
$\alpha_{s} \leadsto R_{s} \leadsto$ dynomics chouger with s
Ex. $\sum_{u t} \subset \mathbb{R}^{2 n}$ a bamily of ellipsoids
$\{H=1\} \leftarrow$ quadrofic Hom

$$
\begin{aligned}
\left(\left.\Sigma_{t,} \lambda\right|_{\Sigma}\right) & \cong\left(\$_{t,}^{2 n-1} \alpha_{t}\right) \\
R_{t}=x_{t} & \sim R_{t}
\end{aligned}
$$

Twe have seen thut thins devere on eigenvalues

Thm (Gray's Thum)

$$
\begin{aligned}
&\left(M^{2 n+1}, \xi_{t}\right) \text { coupect } \Rightarrow \varphi_{t}<1_{0} \\
& \text { closed } \\
&\left(\varphi_{t}\right)_{*} \leqslant \xi_{t}=\xi_{0}
\end{aligned}
$$

Whit is actually puesed

$$
\begin{aligned}
& M^{2 n+1}, \xi_{t}=k \operatorname{er} \alpha_{t} \\
\Rightarrow & \ni \varphi_{t} \& f_{t}>0: \varphi_{t}^{\otimes}\left(f_{t} \alpha_{t}\right)=\alpha_{0}
\end{aligned}
$$

Pf: Mosez's homofopy methad
Rmes Discuss symplectizotion

A glimpse of contect topology
छ woriented coutect strn
$\leadsto{\underset{-}{R}}$ Reeb: nounvaniohy sechion
\leadsto The homotopy type of R is tue $\xi_{\text {A }}^{50-1}$
$\sim A$ top isv. of ξ
E.g. $M=\$^{3} \quad S T \$^{3}=\$^{3} \times s^{2}$
bounotapy types of section
$\delta(\xi) \in\left[\xi^{3}, \delta^{2}\right]=\pi_{s}\left(\xi^{2}\right)=\mathbb{Z}$
Each of then con be realized by a wule ut uot ${ }^{\text {mon }}$ and thor to cach owter sm standard as $0=\delta\left(\xi_{s} t\right)$
But \exists (exactly oue) coukest str छot with $\delta\left(\xi_{o t}\right)=0: \delta\left(\xi_{s t}\right)$
Describe

$$
\text { in } p^{z}
$$

\$7. Elements of Morse Theovig Lecture 12 11/02-2021
-Not directly related to synplectic geom but extr. impoztent on its own.

- connections with many thing inc s.g., ODE'S, PDE'S, everything

General setting \& motivation
X some space: a manifold, loop space, pith space
$f: X \rightarrow \mathbb{R}$ a function (smooth)
Looking for critical pts of f
Does it have them? How many, etc?

$$
\begin{aligned}
& \frac{E_{x}}{} f^{a)} x_{0} \& x_{1} \in Q \leftarrow \text { Riemon. monitald } \\
& i x=\left\{\operatorname{sith}^{i} X \text { connecting } x_{0}, x_{1}\right\} \\
& i_{j}=\left\{x:[0,1] \rightarrow Q \mid x(i)=x_{i}\right\}
\end{aligned}
$$

Fix a R.m. metric om Q

$$
f(\gamma)=\int_{0}^{1} H\left(\dot{\gamma}^{6}, \gamma\right) d t
$$

Least action priuciple (LAP)
$\operatorname{crit}(\&)=$ interral curves connertis $x_{0} \& x_{1}$ is time-1
E.g. $V=0$: geodesics brae x_{6} bo x_{1}

b)

$$
\begin{aligned}
X & =\text { loop spee } \\
& =\left\{\gamma^{\prime}: s^{\prime} \longrightarrow Q\right\} \\
f & =\text { the seme }
\end{aligned}
$$

Relations to diff geometry: Hopf-Rinow, closed geadars, Malomard

LAP: $\operatorname{Crit}(\phi)=$ periodic traj of φ_{H}^{t}

E.g. closel geodesics

Etc: Everythr of cintevest in physirs is a cris pt
of sowe functional
Colculus of veriatsoms

Finite dimensioual settivy
－X＝M a compart（or even closed） finited－dim．mouitold
－$f: M \rightarrow \mathbb{R}$

$$
(f / \partial x=\text { const })
$$

QHow unuy crit pho does f have？
－Notrivial even in sinple cases．
－Assume M is clooed：
max $\& 2$ minf－cintical values Anything else
homes
－In geveral Kes，unlen $M \simeq S^{h}$

Ex Coustruct $\rho \stackrel{M}{\sum}$ nömeo ${ }^{\text {dn }}$
Ex．Coustruct $f: \Sigma_{g \geqslant 1} \longrightarrow \mathbb{R}$ with exatl y 3 critical pts
sketch the levels for π^{2} ：
－Sketch the levels for π^{2} ：F⿴囗⿰丿㇄心＝10 The thizd dt＝Monkeysaldle
－Sitration chayes wher we empore a nor－dig coud on f ， sctistied geverically $\leftarrow \operatorname{explais}$

Definitions
$p \in M$ Critical pt of $f: M \longrightarrow \mathbb{R}$
Del (Menicnilivear) at P is the quadrate

$$
\begin{aligned}
& d^{2} f . T_{p} M \times T_{p} M \rightarrow \mathbb{R} \\
& v, w \rightarrow\left(L_{\tilde{v}} L_{\tilde{w}} f \mid(p)\right. \\
& \text { TExt of vow } \\
& \text { to vf. }
\end{aligned}
$$

Ex. othow that $d^{2} f$ is well deliver.
1 - symmetric

- In local cordintes $x_{1, \ldots, x_{n}}$

$$
\begin{aligned}
& d^{2} f=\sum \frac{\partial^{2} f}{\partial x_{i} \partial x_{i}}(p) x_{i} x_{j} \\
& \text { some of it }
\end{aligned}
$$

Then assume the $d^{2} f$ is uor-dez
Morse index of $p=$ index of $d^{2} f$:

$$
d^{2} f=-\left(x_{0}^{2}+\ldots+x_{(1)}^{2}\right) \nleftarrow\left(x_{k+1}^{2} t \cdots+x_{k}^{2}\right)
$$

Ex. $p=\max :$ index $=n$

$$
p=\text { min : index }=0
$$

Def f is morse if all its critical pts are won-dng
Note: move friction form an open and dense subset of (${ }^{\circ}(\mathrm{m})$

7 hm (morse Lemma) f is C^{3}
Neon a non-deg critical pt $\sqrt[p]{a}$ function sf is differ to its Hessian $H=d^{2} f$:

- $3 \quad \varphi:(v, p) \rightarrow(v, p)$ sit
$\rrbracket f \cdot \varphi=\varphi^{*} f=H+f(p)$
- In some caodinates x_{1}, \ldots, x_{n}

$$
f(x)=f(p)+\sum a_{i j} x_{i} x_{j}
$$

Rna. One of the normal form results

- Another example:

$$
\left.\left.\begin{array}{c}
d f \neq 0 \quad \exists\left(x_{1}, \ldots, x_{n}\right) \\
f(x)=f(p)+x_{1}
\end{array}\right\} \text { s.t. } \quad\right\} \begin{aligned}
& \text { Ex } \\
& \text { Drive } \\
& \text { divertly }
\end{aligned}
$$

More generally, th local nom form for submersion s (also immersion)

- Similar questions for other objects: vector fields, maps, etc
- E.g. vo vil.

$$
\begin{gathered}
v(p) \neq 0 \Rightarrow \exists x_{1}, \ldots, x_{n} \\
v(x)=\frac{\partial}{\partial x_{n}}
\end{gathered}
$$

what if $v(p)=0$?
Pf: Mosev's homotory method...

Morse Homology

Lecture 13
20104-2021
Ret: Audin-Domion

- $f: M \longrightarrow \mathbb{R}$ move functioga-Moztobire
- Crit $_{k}(f)$ — the collection of critical ph of index k
- Fix a ground ring $\overline{\mathbb{E}}: \mathbb{Z}$ or \mathbb{Q} on \mathbb{Z}_{2}, te
- $C M_{k}(f)=$ free module over \mathbb{F} genevoled by $\operatorname{crit}_{k}(f)$
Egg. Height function on Σ_{g}

$$
\begin{array}{cc}
\max k=2 \\
\operatorname{saddles} \\
k=1 \\
\min k=0
\end{array}\left(\begin{array}{l}
d \\
\vdots \\
j
\end{array}\right) \rightarrow\left\{\begin{array}{l}
C M_{0}=\mathbb{F} \\
C M_{1}=\mathbb{F}^{2 g} \\
C M_{2}=\mathbb{F}
\end{array}\right.
$$

Goal: turn $C M_{k}$ into a complex

$$
0 \rightarrow \mathrm{CM}_{\mathrm{n}} \xrightarrow{\partial} \mathrm{CM}_{\mathrm{m}-1} \stackrel{\partial}{\longrightarrow} \quad \xrightarrow{\partial} \mathrm{CM} \xrightarrow{\partial} \mathrm{CM}_{0} \longrightarrow 0
$$

rose that

Con (Morse inequalitis)
IF a field
(a) $\underbrace{\# \operatorname{Crit}_{k}(f)}_{c_{k}} \geqslant \underbrace{\operatorname{dim} H_{k}(M)}_{b_{k}}$
(b) $c_{k}-c_{k-1}+c_{k-2}-\ldots \pm c_{0} \geqslant b_{k}-b_{k-1}+\ldots \pm b_{0}$

Pf (a) $c_{k}=\operatorname{dim} C M_{k} \geqslant b_{k}=\operatorname{dim} H M_{k}$
Puvely algebvar
(b) $\leftarrow E X \leftarrow$ sble mewt

C* a cowplex oven \mathbb{F}
show the C_{*} con be deromposed as a sum of elumentory conplexies exploin check (b) for an elementory couplex
Yet a different formulation. Set $Q(t)=\sum e_{k} t^{k}, \quad P(t)=\sum b_{k} t^{k} \leqslant$ Poincevé $P_{0} l$
Then coeff $\geqslant 0$

$$
Q(-1)=P(t)+(1+t) R(t)
$$

Ex. Prove this-olgs, some mithod
Ex A movse function on Σg has at leest $2 g t i$ critical pb.

Runt. Mouse inequolities co be further ufived

Construction of the Noose differential 2 : Preliminaries

- While $C M_{*}(f)$ is completely determined by f, O depends on an extra str: a R. metric on M
- Fix a R.m. on M Chan to be from a elatain opel and dense set of R.M.'s)
Consider the antigradient flow of f :

$$
\dot{x}=-\nabla f(x): \varphi_{L}
$$

Denote the index of x by $\mu(x)$.
Note: "dim $\mu(x, y) \geq 1^{4}$ if $\neq \varnothing$

Thru For a generic metric, $\mu(x, y)$ is a smooth manifold of dimension $\mu(x)=\mu(y)$
Ex. Discuss in deter:

non-generic

One woy to prove the fbeorem:

$$
\begin{aligned}
& W^{u}(x)=\left\{z \mid Y^{t}(z) \rightarrow x, t \rightarrow-\infty\right\} \\
& W^{s}(x)=\{
\end{aligned}
$$

steble, uusteble menifolds
Morse Lemma: $\Rightarrow w^{n}(x) \underset{\text { diffeo }}{\sim} D^{\mu(x)}$
(Look at Cthe

$$
W^{s}(x) \simeq D^{n-\mu(x)}
$$

exauples)

$$
M(x, y)=w^{u}(x) \cap w^{s}(y)
$$

If $w^{u}(x) \nrightarrow w^{s}(y)$,
$\mu(x, y)$ is smooth and

$$
\begin{aligned}
\operatorname{dim} \mu^{\prime}(x, y) & =\operatorname{dim} W^{4}(x)+\operatorname{dim} W^{s}(y)-n \\
& =\mu(x)+n-\mu(y)-n \\
& =\mu(x)-\mu(y)
\end{aligned}
$$

How to achive tronsversality
Look at $\left(w^{u}(x) \cap\{f=c\}\right) \cap\left(w^{s}(y) \cap\{f=c\}\right)$ $f(y)<c<f(x)$, perturb the wehriz slightly veg abave c to alter \square
Cor Bythes, for a geveric metriz

$$
\mu(y) \geqslant \mu(x) \Rightarrow \mu(x, y)=
$$

more modern \& different perspective Lecture Vi $^{\text {L }}$
$\mu(x, y)=$ the space of parametrized

$$
11 / 09-2021
$$

- trajectorin $t \mapsto \varphi^{-2}(z)$
${ }^{2}$ from x to y
$\mapsto Y^{\top}(z)$ trajectory \longleftrightarrow initial condition

$$
\varphi^{t}(t) \longleftrightarrow z=\varphi^{0}(z)
$$

Time shit: $t \mapsto y^{t}(z) \quad z \mapsto \varphi^{\top}(z)$

$$
t \stackrel{s}{\mapsto} \varphi^{t+T}(z)
$$

\Rightarrow free $I R$-action on $M(x, y), x \neq y$
$\frac{\text { spar of unpovametrized trajectories }}{\text { an }}$

$$
\hat{\mu}(x, y)=\mu(x, y) / \mathbb{R}
$$

Con $\hat{\mu}(x, y)$ is a smooth monitole

$$
\text { of } \operatorname{dim} \mu(x)-\mu(y)-1
$$

E.g. $\mu(x)=\mu(y)+1 \Rightarrow \hat{\mu}$ is discr

$$
\mu(x) \leq \mu(y) \Rightarrow \hat{M}=\varnothing
$$

Note - $\mu 8 \hat{\mu}$ are usually non-compo t

- Geometrically, $\hat{\mu}$ con be identified with $\mu \cap\{f=c\}$ $f(y)<c<f(x)$
\uparrow regular
(For a generic metrics
Thy $\hat{\mu}(x, y)$ has a compoctificotion formed by broken trajectories
 such trajectories

$$
x_{1}=z_{0} \leadsto z_{1} \leadsto \ldots \leadsto z_{k}=y
$$

form a compact manifold with corners.
Rub

$$
\begin{aligned}
& f(x)>f\left(z_{1}\right)>\ldots>f(y) \\
& \mu(x)>\mu\left(z_{1}\right)>\ldots>\mu(y)
\end{aligned}
$$

Cons.

$$
\Rightarrow \hat{\mu}(x)=\mu(y)+1 .
$$

$\Leftrightarrow 3$ finite many twaj from x to y (for a generic metric)

Definition of ∂
Fix a geverve metric so tet all the thus hold

$$
\mu(x)=\mu(y)+1
$$

- Over $\mathbb{Z} 2$, set

$$
\begin{gather*}
\mathbb{Z}_{2} \exists m(x, y)=\# \hat{\mu}(x, y) \bmod 2 \\
\partial x=\sum_{y} m(x, y) y \tag{*}\\
\mu(z)=\mu(y)+1
\end{gather*}
$$

Ex. Do there:

- Over \mathbb{Z} (and hence ony ring)

Need to toke into account orieutetions
Fix orientation of $T_{x} w^{\prime \prime}(x) \quad \forall x$
\Rightarrow coorientefiom of $T_{x} w^{s}(x)$
$\Rightarrow\left\{\begin{array}{l}\text { orientations of } w^{u}(x) \\ \text { cooricutation of } w^{s}(x)\end{array}\right.$
\Rightarrow orientations of

$$
\mu(x, y)=w^{u}(x) \cap w^{s}(x)
$$

.When $\mu(x)=\mu(y)+1$
$\mu(x, y)=$ disj union of finite
of trajectories
Each trajectory γ is also oriented by the flow \Rightarrow Two ovientetions

$$
\operatorname{sigh}(X)=\left\{\begin{array}{l}
+1 \text { ovientetiers agree } \\
-1 \quad \cdots \cdot \text { disagree }
\end{array}\right.
$$

And

$$
m(x, y)=\sum_{x \sim} \operatorname{sign} y
$$

$$
*: \quad \Omega x=\sum m(x, y) y
$$

Ex. Look ot the torus example again.

Checking that (CM $(1), \partial)$ is a complex
The $\partial^{2}=0$
Pf. For the sole of simplicity over \mathbb{Z}_{2}

$$
\left.\begin{array}{rl}
\partial^{2} x & =\partial \sum_{y} m(x, y) y \\
\mu(x): \mu(y)+1 \\
\mu(y): \mu(z)+1
\end{array}=\sum_{y} m(x, y) \sum_{z} m(y, z) z\right)
$$

$\bmod 2$
\# of broken trajectories (one broke) from x to $z(\bmod 2)$
But $\hat{\mu}(x, y)$ one-din manifold its cowpachifiction: \$'r I closed interval
\Rightarrow broken trojectories wame in pairs
\Rightarrow \# is even

$$
\begin{aligned}
& \Rightarrow \sum_{y} m(x, y) m(y, z)=0 \bmod 2 \\
& \Rightarrow \partial^{2}=0
\end{aligned}
$$

set $H M_{*}(f)=H_{*}(\operatorname{cM}(f), \partial)$; fixed coefficient
Tho (Morse theory)

$$
H M_{*}(f)=H_{*}(M)
$$

Rob. As a consequence, P.h.s is independent of f

- We hove il ready seen some consequences: Morse inequalities, etc
Outline of the pf:
"Classical" Morse theory

Morse function $f \leadsto$ Cllulor derownositio on M of M

$$
\text { Crit }_{k}(f) \leadsto
$$

$$
w^{u}(x) \leftarrow \text { cells }
$$

$$
\operatorname{crit}_{k}(f)
$$

$$
\begin{aligned}
& \Rightarrow H_{*}\left(C M(\not), \partial_{M}\right)=H_{*}\left(C(M), \partial_{(\omega)}\right) \\
& \text { Details: Audin-Davilau }{ }^{H^{*}}(M)
\end{aligned}
$$

Impoztont:
we could have esteblished the isomorphism

$$
H M_{*}\left(f_{0}\right) \longleftrightarrow H M_{*}\left(f_{1}\right)
$$

without going throng H_{\star} (M)
Methad

$$
\begin{aligned}
& f_{0} \stackrel{s}{\sim}_{\sim}^{f}: f_{s} \longleftarrow \text { not necessorily } \\
& \Rightarrow C M_{*}\left(f_{0}\right) \xrightarrow{\neq} C M_{*}\left(t_{1}\right) \\
& \Rightarrow H M_{*}\left(\psi_{0}\right) \stackrel{\nsim}{\rightleftarrows} M M_{*}^{*}\left(\psi_{1}\right) \\
& \text { anison }
\end{aligned}
$$

Applicotions: A quich look Leuture 15 11/16-2021
Lower bounds on \# Prit (f)
Two types:

(1) Lower bounds: Mowse inequablities

$$
\begin{aligned}
& \text { \# } \operatorname{Crit}_{k}(f) \geqslant b_{k}=\operatorname{dim} H_{k}(M) \\
& \# \operatorname{Cn} \cdot t(f) \geqslant \sum b_{k}
\end{aligned}
$$

Morse
E.g. $\cdot f^{2}$ on $\pi^{n} \quad \# \operatorname{Crit}(t) \geqslant 2^{n}$
of on $\mathbb{C} P^{n}$ or $1 R P^{n}$

$$
\# \operatorname{Crit}(t) \geqslant n+1
$$

$$
\text { - f on } \Sigma_{g} \# \operatorname{crit}(1) \geqslant 2+2 g
$$

Etc.
(2) Calculations of H_{*} (M) usiug

Mowse homology.

$$
H_{*}(m)=H_{*}\left(H M_{*}(t), \partial_{m}\right)
$$

very difficuet
Work well whon D.0 to deol will in general
Examples (over \mathbb{Z} or \mathbb{F})

1) Σ_{g} on π^{2}

\leftarrow work out unstoble trej of $y_{1} \& y_{2}$ ohould conce from x COvientations

$$
\Rightarrow H_{*}\left(\Sigma_{g}\right)= \begin{cases}F^{2 g} & k=2 \\ F^{*} & k=1\end{cases}
$$

2) $\mathbb{C P} \mathbb{P}^{k}$ (over \mathbb{Z} or \mathbb{F})

$$
\begin{aligned}
& \mathbb{C} P^{k}=\left\{\left.\left(z_{0}: \ldots: z_{n}\right)\left|\sum\right| z_{j}\right|^{2}=1\right\} \\
& f(z)=\sum_{\operatorname{dishin}} \lambda_{j}\left|z_{j}\right|^{2} \text { or } \frac{\sum \lambda_{j}\left|z_{j}\right|^{2}}{\left.\sum \eta z_{j}\right|^{2}} \\
& \lambda_{0}<\lambda_{1}<\ldots<\lambda_{n} \leftarrow \underset{\text { convenient }}{\text { not assume }} \text { to }
\end{aligned}
$$

Ex. a) Crit $(f)=$ "coordinate axes"
Work out $=\left\{(0, \ldots, 0,1,0, \ldots, 0)=x_{j}\right\}$
b) In coordinates

$$
u_{j}=\left(u_{0, \ldots}, u_{j-1}, 1, u_{j+1}, \ldots, u_{n}\right\}
$$

near x_{j} the Hessian is

$$
\left(\lambda_{0}-\lambda_{j}\right)\left|u_{0}\right|^{2}+\left(\lambda_{1}-\lambda_{j}\right)\left|u_{1}\right|^{2}+\ldots \operatorname{skip}\left(\lambda_{j}-\lambda_{j}\right)
$$

$\Rightarrow f$ is morse \& $\mu\left(z_{j}\right)=2 j \leftarrow z_{j}$ is

$$
\Rightarrow \quad H_{k}\left(\mathbb{C} \mathbb{P}^{4}\right)= \begin{cases}\mathbb{F} & 0 \leqslant k=2 j \leqslant 2 m \\ 0 & \text { otherwise }\end{cases}
$$

Some details
a) Lagrans mudtipliess

$$
s^{2 n+1}=\{g=1\}
$$

Cnit pts:

$$
\nabla g=e \cdot \nabla \tilde{f}
$$

$$
\left.\begin{array}{l}
\nabla g=2 z=2\left(z_{1}, \ldots z_{n}\right) \\
\nabla f=2\left(\lambda_{1} z_{1}, \ldots, \lambda_{n} z_{n}\right)
\end{array}\right\} \Rightarrow \begin{aligned}
& \text { lit pts } \\
& \text { coozd axes }
\end{aligned}
$$

b) Heseivar say at $x_{0}=(1,0 \ldots 0): j=0$

$$
\begin{aligned}
u_{1} & : u_{1}=\frac{z_{1}}{z_{0}}, u_{2}=\frac{z_{2}}{z_{0}}, \ldots \\
f(u) & \frac{\sum \lambda_{k}\left|z_{k}\right|^{2}}{\sum\left|z_{k}\right|^{2}} \quad \text { Heze } k=0, \ldots, 2 \\
& =\frac{\lambda_{0}+\sum \lambda_{k}\left|u_{k}\right|^{2}}{1+\sum\left|u_{k}\right|^{2}} \quad \text { But kuse } \\
& =\left(\lambda_{0}+\sum \lambda_{k}\left|u_{k}\right|^{2}\right)\left(1+\sum\left|u_{k}\right|^{2}\right)^{-1} \\
& =\lambda_{0}+\sum \lambda_{k}\left|u_{k}\right|^{2}-\lambda_{0} \sum\left|u_{k}\right|^{2} \\
& =\lambda_{0}+\sum_{k=k}^{n}\left(\lambda_{k}-\lambda_{0}\right)\left(\left.u_{2}\right|^{2}\right.
\end{aligned}
$$

3) $\mathbb{R} P^{k}$ over \mathbb{Z}_{2}

Similorly $\mathbb{R}^{h}=\left\{\left.\left(y_{0}: \ldots: y_{n}\right)\left|\sum\right| y_{j}\right|^{2}=1\right\}$

$$
f(y)=\sum \lambda_{j}\left|y_{j}\right|^{2}
$$

Ex. similanly
a) $x_{j}=(0, \ldots, 0,1,0, \ldots, 0) \leftarrow$ Cirik al ph
b) Hessian : similar - same colulbtion

$$
\Rightarrow \quad \mu\left(x_{j}\right)=j
$$

c) $\int=0$ over \mathbb{Z}_{2} : exoctly two trajectories from x_{j+1} to x_{j} (for the round melvic)

$$
\Rightarrow \quad H_{k}\left(\mathbb{R P}_{j}^{n} \mathbb{Z}_{2}\right)= \begin{cases}\mathbb{Z}_{2}, & 0 \leq k \leq n \\ 0 & \text { otherwige }\end{cases}
$$

RmL. Over \mathbb{Z}, hordez -ocientations

Other applichous:

- Geveval: Poincove duality

$$
\begin{aligned}
x M_{*}(f) & =C M_{m-*}(f)^{*} \quad m=\operatorname{dim} \\
\Rightarrow \quad H_{*}(M) & =H_{m-*}(M)^{*}=H_{m-*}(M)
\end{aligned}
$$

- Dift Topolagy: Mandle body decorpositia
- 3-monifolds
- clacsificemar ef surteces

The Poincare corij \& classificotion of monitol es

- More homology elculation
- Looje spees \& clused geodesics
§8 Arnoldis conjecture and all thot Lecture 16
Some definitious - non-degenevocy n/28-2021
$\varphi: M \circlearrowright$
Def $\cdot x \in F i x(\varphi)$ is hou-deg

$$
\text { i } \frac{\operatorname{det}(D \varphi-I) \neq 0}{T x^{M}}
$$

No eigenvectors with ergenvalul 1 .
$\Leftrightarrow G \operatorname{Goph}(\varphi) \not \subset \Delta \subset M \times M$
at x

- φ is nou-deg if all $x \in$ Fix (φ) are uou-deg
Rmb: In any reasoneble clan (all smooth, symplectic, vol. pves, Mamilhonian) uou-deg R a genevir condition
Rmk: Worning $H: \underset{\text { Synplectio }}{M} \underset{\mathbb{R}}{ }$

$$
\varphi^{t}(x) \subset\{H=c\} \text {. T. perio dor }
$$

- nou - constent
$\Rightarrow x$ is dey fixed pt fi φ^{\top} $X_{H}(x) \quad X_{H}(x)$ is an eigenvector with eigeuvalue 1.

Arnold's conjecture
Coij $(A C, I) \varphi_{H}:(M, \infty)$ (Ham

RmL. One of the most imporlont question in sympl. geometiry \Rightarrow Floer theory

- Motivotion: Poincevé's wook in celestid mechouics (ron-trivial poth)
- Arnold stoted it somealit difterently
- - Nou.dog case is pretty much proved by nowi Floen - Fukaye et ol
- Dey case is still open for many moniddds

$$
\$^{2} \times \$^{2} \times \$^{2} \leftarrow \text { with ares }(1, \sqrt{2}, \sqrt{3}) \ldots
$$

A word an Lusternik-Sehnivelmann theory
Cup-length of M : $\operatorname{CL}(M)$ over H

$$
C L(M)=\max \left\{k \mid \exists \alpha_{1}, \ldots, \alpha_{k} \in H^{*>0}(M): \alpha_{1}, \ldots \cup \alpha_{k} \neq 0\right\}
$$

Note: $\quad e L(M) \leqslant \operatorname{dim} M$

Ex $\cdot C L\left(s^{\prime}\right)=1$

- $C L\left(\mathbb{C} P^{4}\right)=h$
- $C L\left(\mathbb{R} P^{h}\right)=h \quad$ over $\mathbb{F}_{2}=\mathbb{Z}_{2}$
- CL $\left(\pi^{h}\right)=n$
- M elosed symplectir $\Rightarrow C L(M) \geqslant \frac{1}{2} \operatorname{dim} M$

Thm (LS)

$$
\begin{aligned}
& f: M \rightarrow \mathbb{R} \text { smorth } \\
& \text { dosed } \\
\Rightarrow \quad & |\operatorname{Crit}(f)| \geqslant \operatorname{CL}(M)+1
\end{aligned}
$$

Some other vaviants: Lagrongion intersections
(Thm of Loudenboch - Sikovav) - Also coujby A.
$\varphi: T^{*} Q D$ Hanjletomian di-leo

$$
\begin{aligned}
& L=\varphi(\mathbb{Q}) \text { zevo section }{ }^{\sum \lim H_{L}(L): \text { LAQ }} \text { : } \\
& \Rightarrow \neq \operatorname{Ln} Q \geqslant\left\{\begin{array}{l}
\sum(L)+1, \text { genaval }
\end{array}\right.
\end{aligned}
$$

much easien

$\underline{R_{n k}}-E x \quad f: Q \rightarrow \mathbb{R}$

$$
\text { f Mouse } \Leftrightarrow \underbrace{\text { graph }(d f) \text { A } Q \subset T^{*} Q}_{\text {Lagn } L}
$$

Crit pts \longleftrightarrow gropk $(d f) \cap Q$

$$
\begin{gathered}
L=\operatorname{groph}(d f) \subset T^{*} Q \\
L=\varphi(Q): \varphi(q, p)=(q ; p+d f) \\
H(q, p)=f(q)
\end{gathered}
$$

- Prove for $Q=S^{\prime}$ - exploin Area "swept" by L

Digrelione
$M, \omega=d \lambda$ exaut syuplectic monitold
$\varphi_{t}=$ syuplectic isotopy

$$
\begin{array}{ll}
\varphi_{t}^{*} \omega=\omega & , \varphi_{0}=i d \\
x_{t}=\text { generating v.f. } \quad \alpha_{t}=i_{t} \omega \text { cloodl }
\end{array}
$$

Q How do we tell if φ_{t} is Hom, ive. α_{+}is exolt?

Rmh $\alpha, d \alpha=0$

$$
\alpha, \alpha \alpha=0, \int_{k}^{\alpha} \alpha=0 \quad \forall \text { loops } \gamma
$$

Limme φ_{t} is Ham

$$
\Leftrightarrow \underset{V t}{t} \operatorname{Hlom}_{\varphi_{t}(\gamma)} \gamma \quad \log _{\gamma} \lambda=\int_{\gamma} \lambda
$$

Ex

Not Ham

Area obove $=$ Area below

Pf

$$
\bar{d}: \quad \int_{\varphi_{t}(\gamma)} \lambda=\int_{\gamma} \varphi_{t}^{*} \lambda
$$

$$
\frac{d}{d t} \int_{\varphi_{t}(\gamma)} \lambda=\int_{\gamma} \frac{d}{d t} \varphi_{t}^{*} \lambda=\int_{\gamma} \varphi_{t}^{\psi} L_{x_{t}} \lambda
$$

$$
=\int_{t} \alpha_{t} \text { also rouges throng all loops }
$$

u_{t} Ham $\alpha_{t} \operatorname{exavt} \int_{\varphi_{t}(\gamma)} \alpha_{t}=0 \quad \forall \gamma$

$$
\Leftrightarrow \int_{\varphi_{t}(y)} \lambda=\operatorname{cocst} t(\gamma)
$$

Rub A variant
$(M, \omega) \leftarrow$ not exact

Bottom live: in many instances om cen expect $L_{0} \& \quad \varphi\left(L_{0}\right)$ have many intersections
$\frac{\text { But not always: }}{1}$
Ex

Back it AC, I
Ex $H: M \rightarrow \mathbb{R}$ autovanous

$$
\text { Crit (H) c Fix }(\varphi)
$$

Note: $x \in \operatorname{Crit}(H)$ con be usu-deg as a crit pt but degas a fixed pt E.g. $H(p, q)=\pi\left(p^{2}+q^{2}\right)$

$$
\text { But } \varphi_{H}=i d
$$

Loco s small circle (Lagranfion)

$$
\varphi=\text { rotation }
$$

$$
\varphi\left(L_{0}\right) \cap L_{0}=\varnothing
$$

Further evidence
Chm (Weinstein, 70s)
φ : MP C'-clore to id, Ham

$$
\Rightarrow F i x(\varphi) \geqslant \ldots .
$$

Pf
Focus or this

- $\operatorname{Gr}(\varphi)$ $\subset \mathrm{M} \times M$ is C^{\prime}-close b Δ Weinslein tub and the

$$
M \times M
$$

$$
\begin{gathered}
\operatorname{image}(G u(\varphi)) \approx \text { zero section } \\
T^{*} M
\end{gathered}
$$

$$
\operatorname{Gr}(\alpha)=2
$$

Lagrangian $\Leftrightarrow \alpha$ is closed

- φ Mamiltouian $\Rightarrow \underbrace{\alpha \text { is exact }}$

TH M

$$
\begin{aligned}
& \Leftrightarrow \quad \int_{\gamma=0} \alpha \leftarrow \text { any loop in } M \\
& \Leftrightarrow \quad \int_{\gamma=p d q}^{\gamma_{0}} \lambda \leftarrow \text { any loop in } L
\end{aligned}
$$

- But $\int_{\gamma} \lambda=F \operatorname{lux}(\varphi)(\gamma)=0$

Nuance: - easy when $\varphi_{n}^{t}{ }^{c^{\prime}}$ id

- Need wock whon ary $\varphi \approx^{\prime \prime}$ id $(\Leftarrow$ Flux coijecture)

$$
\begin{aligned}
\Rightarrow & \alpha=d f \\
& \operatorname{Ln} M \leftrightarrow \operatorname{lni} t(f)
\end{aligned}
$$

Apply Mause Theory on LS Theony

Toward the Pf of AC:
The least Achion Principle

Lecture 18
11/30-2021

* M exact $\omega=d \lambda$
E.g. $\mathbb{R}^{2 n}$ on $T^{*} M$
$H: M \times d^{\prime \prime} \longrightarrow \mathbb{R}, \quad \varphi=\varphi_{H}^{\prime}$
Fix $(\varphi) \longleftrightarrow 1$-peciodic oobils of φ_{+1}^{t}

$$
\Lambda=c^{\infty}\left(s_{s}^{\prime} ; M\right)
$$

$A_{n}: \wedge \longrightarrow \mathbb{R}$ action functional

$$
A_{H}(\gamma)=-\int_{\gamma} \lambda+\int_{0}^{1} H_{t}\left(Y_{t}\right) d t
$$

Thm (Least Aetion Prixciple)
in moe
dutail

Discuss

Anology with finate dime

$$
\begin{aligned}
& \operatorname{lrit}\left(A_{H}\right)=1 \text {-peviodic osbits of } \varphi_{H}^{t} \\
& \checkmark \gamma_{0} \in \operatorname{Crit}\left(A_{H}\right): \forall \gamma_{s} \leftarrow \text { vov. of } \gamma_{0} \\
& \int_{\gamma_{0}}^{\gamma_{s}} \\
& \left.\frac{d}{d s} A_{H}\left(\gamma_{s}\right)\right|_{s=0}
\end{aligned}
$$

Rmh $T_{\gamma} \Lambda=\{$ vectorhields ξ along $\gamma\}$

$$
=\left\{\xi: S^{\prime} \xrightarrow{\infty} T M \mid \xi(t) \in T_{\gamma(t)} M\right\}
$$

$$
L_{\xi} A_{H}(x)=\left.\frac{d}{d s} A_{H}\left(\gamma_{s}\right)\right|_{s=0} \xi(H)
$$

Ex: indepundent of p_{s} when

$$
\left.\frac{\partial y_{s}(t)}{\partial s}\right|_{s=1} \xi(t)
$$

Note $\forall \xi \exists \gamma_{s}$ s.t.
Toke $\quad x_{s}(t)=\exp _{\dot{f}(t)}(s \xi(t))$

Pf of LMP
Need to show:

$$
\begin{aligned}
& \gamma \in C_{r i}+\left(A_{H}\right) \Leftrightarrow \dot{\gamma}(t)=X_{H_{t}}(\gamma(t)) \\
& \Uparrow_{\|} \\
& L_{\xi} A_{H}(\gamma)=0 \quad \forall \xi \\
& \prod_{d s} \\
& \left.\frac{d}{d} A_{H}\left(r_{s}\right)\right|_{s=0}=0 \quad \forall X_{s}
\end{aligned}
$$

$$
\begin{aligned}
& A_{H}\left(\gamma_{s}\right)=-\int_{\gamma_{s}} \lambda+\int_{0}^{1} H_{t}\left(\gamma_{s}(t)\right) d t \\
& \left.\left.\frac{d}{d s} A_{H}\left(\gamma_{s}\right)\right|_{s=0}=\underbrace{-\frac{d}{d s} \int_{\gamma_{s}} \lambda|+|_{s=0}}_{2} \underbrace{\frac{d}{d s} \int_{0}^{1} H_{t}\left(\gamma_{s}(t)\right) d t}_{1} \right\rvert\, \\
& \text { 1) }\left.\frac{d}{d s} \int_{0}^{1} H(r) d t\right|_{s=1}=\left.\int_{0}^{l} \frac{d}{d s} H_{t}\left(p_{s}(t)\right) d t\right|_{s=0} \\
& =\int_{0}^{1} L_{\xi(t)} H t d t \\
& =\int_{0}^{1} d H_{t}(\xi(t)) d t \\
& { }_{\substack{X_{\left(H_{t}\right)} \\
\sum_{\text {suppres }}}}=\int_{0}^{1} \omega(\xi(t), X) d t
\end{aligned}
$$

2)

$$
\begin{aligned}
\left.\frac{d}{d s} \int_{r_{s}} \lambda\right|_{s=0} & =\lim _{s \rightarrow 0} \frac{1}{s}\left(\int_{r_{s}}-\int_{r_{0}} \mid \lambda\right. \\
& =\lim _{s \rightarrow 0} \frac{1}{s} \int_{u} \omega
\end{aligned}
$$

u :

$$
\begin{aligned}
& \$^{\prime} \times[0, s] \longrightarrow M \\
& t \tau \gamma_{\tau}(t)
\end{aligned}
$$

$$
=\lim _{s \rightarrow 0} \frac{1}{s} \int_{0}^{1} \int_{0}^{s} \omega\left(\frac{\partial u}{\partial r}, \frac{\partial u}{\partial t}\right) d s d t
$$

$$
=\int_{0}^{1} \lim _{s \rightarrow 0} \frac{1}{5} \int_{0}^{s} \cos _{0}\left(\frac{\partial u}{\partial \tau}, \frac{\partial u}{\partial t}\right) d \tau d t
$$

$$
=\int_{0}^{1} w(\xi(t), \dot{r}(t)) d t
$$

$$
\Rightarrow \quad x_{\in} \in \operatorname{Crit}^{2}\left(A_{n}\right)
$$

$$
\Leftrightarrow-\int_{0}^{1} w(\xi(t), \dot{\gamma}(t)) d t+\int_{0}^{1} w(\xi(t), X) d t=0
$$

$$
\Leftrightarrow \int_{0}^{1} \omega(\xi \quad,-\dot{\gamma}+x) d t=0 \quad \forall \xi
$$

Non-degenevary of $\xi \stackrel{\left(E_{x}\right)}{\Rightarrow}$

$$
\begin{array}{ll}
\Longleftrightarrow & -\dot{\gamma}(t)+X_{H_{t}}(\gamma(t))=0 \\
\Leftrightarrow & \underbrace{\dot{\gamma}(t)=X_{U_{t}}(\gamma(t))}_{\gamma \text { is a l-periodic abit of } H}
\end{array}
$$

*M closed, $\omega{H_{\mathcal{H}_{2}}=0: \int_{s^{2} \rightarrow M} \omega=0: E \cdot g \cdot \pi^{2 n}}_{\Sigma_{g \geqslant 1}}$
$\Lambda_{0}=$ contractible leaps But wat © p^{n}

$$
A_{H}(\gamma)=\int_{\substack{D^{2} \rightarrow M}} \omega+\int_{0}^{1} H_{t}(\gamma,(t)) d t
$$

well-detiul: $\quad \int w=0$
(i)

$$
A_{H_{1}}: \Lambda_{0} \rightarrow \mathbb{R}
$$

contr. L-peviodic obits

$$
\text { of } \varphi_{H}^{t}
$$

$T \operatorname{hm}_{\text {(LAP) }}$

$$
\operatorname{Crit}\left(A_{H}\right)=\begin{gathered}
\text { contr. } 1-\text { peciudic } \\
\text { orbits of } \varphi_{H}^{t}
\end{gathered}
$$

Pf Similar. Essentially cen assume ω is exact near γ.

Mam Floer Theory: Outline $\frac{\text { Lecture } 19}{12 / 02-2021}$
Assume: $\bar{\pi}_{2}(M)=0$ or ot least $\omega / \bar{\pi}_{2}=0$
$\Rightarrow A_{H}: \Lambda \longrightarrow \mathbb{R}$ is well defined contractible loops

Recall: Fix $\left(Y_{H}\right) \leftrightarrow \operatorname{crit}\left(A_{H}\right)$

$$
0 \sim \varphi_{H}^{t}(x)
$$

\Rightarrow

$$
x=\varphi_{n}(x)
$$

To prove $A C, I$: $|F i x(p)| \geqslant \ldots$. suffices to show that $\left|\ln _{\text {rit }}\left(A_{n}\right)\right| \geqslant \ldots$

- Assume: φ_{H} is non-deg \Leftrightarrow A_{n} is morse

Idea: Do moose theory for A_{k} on 1 for on $2^{2}-$ metric

Does not literally work
But lets try

Need a Riemannian metric on 1

- \rangle a R. melorir on M
$T_{\gamma} \Lambda=v . f_{0} \xi$ along γ

$$
\left\langle\xi_{0}, \xi_{0}\right\rangle=\int_{0}^{1}\left\langle\xi_{0}(t), \xi_{0}(t)\right\rangle d t
$$

$\xi_{0}(t) N V T I 7, \xi_{1}(t)$ Need to chose

$$
r_{1}^{s i} \quad<,>\text { on } M
$$ corefolly

- \rightarrow Precall Jou (Vw) is compotiblewitew if $\langle\underline{X}, Y\rangle=\omega(\underline{X}$, JY $)$ is an inner product
\rightarrow Also coll \leqslant,$\rangle coupetible$
J coupclible $\longleftrightarrow<$,$\rangle coupolible$
\rightarrow Exist and form a confractible set (E.g. MoDuft. Sola mon)
\Rightarrow Lemosa $\exists J: T M \rightarrow T M, J^{2}=-I$ ubich is compotible with ω at every pt:

$$
\langle\because\rangle\rangle=\omega=\omega(; J \cdot)+\operatorname{ri\omega }(0, \cdot)
$$

is a Mennili. ot eney $a t$

Disurs the pot
Rmh $\omega(X J Y)=\langle\underline{X} y\rangle$

$$
\begin{aligned}
& \Rightarrow \quad \omega(\underline{Y} Y)=\langle X,-J Y\rangle \\
& \Rightarrow \quad X_{H}=-J \nabla H \Leftrightarrow \nabla H=J X_{H}
\end{aligned}
$$

- The gradient of AH

The Pf of LAP:

$$
\begin{aligned}
& \text { The Pf of LAP: } \\
& \begin{aligned}
\frac{d A_{H}(\xi)}{L_{\xi} A_{H}(\gamma)} & =\int_{0}^{1} \omega\left(\xi,-\dot{\gamma}+X_{H}\right) d t \\
& =\int_{0}^{1}\left\langle\xi,-J\left(-\dot{\gamma}+x_{H}\right)\right\rangle d t
\end{aligned}
\end{aligned}
$$

Recall: $\nabla f:\langle\nabla f, \xi\rangle=d f(\xi)$
$\nu=\left\langle+J \dot{x}-J x^{\prime}\right.$,

$$
=\langle\underset{E x}{\Gamma+J \dot{\gamma}}+\underbrace{-J x_{H_{1}}}_{H_{1}} \xi\rangle_{L^{2}}
$$

$$
\Rightarrow \nabla A_{H}(\gamma)=J \dot{\gamma}+\nabla H
$$

The anti-grad flow equation

- $u: \mathbb{R} \longrightarrow \Lambda=$ contr. loope in M

$$
\underbrace{\frac{d u}{d s}}_{T_{u(s)}}=-\nabla A_{H}(u(s))\left\{s^{\prime} \longrightarrow M\right\}
$$

- $u: \underset{s}{\mathbb{R}} \times{\underset{t}{\prime}}^{\prime} \longrightarrow M$

$$
\begin{aligned}
& \frac{\partial u}{\partial s}=-J \frac{\partial u}{\partial t}-\nabla H(u) \\
& \text { or } \\
& \begin{array}{l}
\frac{\partial u}{\partial s}+J \frac{\partial u}{\partial t}=-\nabla H(u) \\
\text { Candyy-Riemon }^{\frac{\partial}{2 t}}
\end{array}
\end{aligned}
$$

Floer equation

Fizst order elliptic equalion

Ex. 1 H autonomous

$$
u: \mathbb{R} \rightarrow M \text { ind of } t
$$

anti-grad trajectovy solves FE
Ex.l $H \equiv 0$, J true conplex str

Difficulties

- The flow does not exist $\leqslant E \times 2$

$$
H=0 \Rightarrow u \text { hot }
$$

$\Rightarrow u(s)$ is real analytic
\Rightarrow no initial value sol for most initial values
$\left\{\left\{\begin{array}{l}\text { - not bonded from below } \\ \text {. infinite index and coindex }\end{array}\right.\right.$
Ex. $\quad M=\mathbb{R}^{2}=\mathbb{C} ; \quad M=0$

$$
\begin{aligned}
& \Lambda:=\left\{S^{\prime} \vec{\longrightarrow} \mathbb{C}\right\} \\
& A_{H}(z)=-\int_{z} p d q=A(z)
\end{aligned}
$$

Fonvier expansion

$$
z=\sum z_{k} e^{2 \pi i k t}
$$

Ex

$$
A(z)=\underbrace{-2 \pi \sum_{k=-\infty}^{+\infty} k\left|z_{k}\right|^{2}}_{\infty}
$$

Solution
Eventhough the flow is not detived the mod spaces $M(x, y)$ are and heve reasoneble properties

Cnet

$$
=\left\{u: \mathbb{R} \times S^{\prime} \rightarrow M\right. \text { s.t. }
$$

$$
\bar{\partial} u=-\nabla H(w)
$$

Asyuptolir bounday value probotem for a ist oreder elliplor equas
\Rightarrow Solutrous
\Rightarrow Con do Morre Theorg
Lotes of techical difficullies...

