Time - change
Lecture 6
$H: \mathbb{R} \times M \rightarrow \mathbb{R}$
Mamiltonian

$$
10 / 92-2021
$$

$$
\lambda: \mathbb{R} \rightarrow \mathbb{R}
$$

time-chary

Does nat hove to be bey
monotone bat usually is
set $K_{t}(x)=\lambda^{\prime}(t) H_{\lambda(t)}(x)$
Ex. Show that $\varphi_{K}^{t}=\varphi_{M}^{\lambda(\lambda)}$
Ex. .) $\lambda(t)=T \cdot t: K=T H_{T t}$
$\Rightarrow \varphi_{K}^{\prime}=\varphi_{M}^{\top}: \quad$ looking at φ_{M}^{\top} con

$$
T=1
$$

2) $A+\underset{2}{2} \underbrace{1-}_{i}$

$$
\varphi_{k}^{\prime}=\varphi_{h}^{\prime}
$$

but
$k \equiv 0$ when when

$$
t \approx 0 \& \& \quad t \approx 1
$$

\Rightarrow Looking at 4_{H}^{k} con always assume H is L-periodic in time $H_{t+1}=H_{t}$

- 4 Relevant Guonps:

Ham v.s. Syup
Ded. $\varphi_{H}=\varphi_{H}^{\prime}$ is called a Hamiltonion ditteo
Rmbs - Can assume thent M is 1 -periodir ist

- Con uplace 1 by auything
- Mamillovion \Rightarrow Sywplertir:

$$
\varphi^{*} \omega=\omega
$$

- when m is not corje At, need do aslume smeth alout H at ∞ We'll usually arrume thA M is compeetly supported $\Rightarrow \operatorname{supp} \varphi$ ir conped *

Pros The collection of Hom diffeos

$$
\operatorname{Mam}=\operatorname{Mam}(M, w) \text { is a gs. }
$$

$\frac{\text { Rmi }}{\text { Not obuions: } t l \text { is uot autonomars }}$

$$
\left(\varphi_{H}^{t}\right)^{-1} \neq \varphi_{M}^{-t}
$$

ard it., not clea why

$$
\varphi_{H}^{t} \varphi_{k}^{t} \text { is Mamillonian }
$$

Focus on the product:
Pf. Consider $H_{t}, t \in[0,1]$

$$
\left.\begin{array}{l}
H_{t}, t \in[0,1] \\
K_{t-1}, t \in[1,2]
\end{array}\right\} F_{t}
$$

smooth in t when soy
$H_{2} \equiv 0$ for $t \approx 1$? ca be achieved
$K_{t} \equiv 0 \quad$ fa. $\left.\quad t \approx 0\right\}$ by bimechoy
Then F_{t} gereveles
U_{M}^{t} for $t \in[0,1]$

$$
\varphi_{K}^{-t-1} \varphi_{M}^{\prime} \text { for } t \in[1,2]
$$

So over te [0, 2] it gereverbes $\varphi_{k}^{\prime} \varphi_{1}^{\prime}$
$\Rightarrow \operatorname{Ham}(M, \omega)$ is closed under thu product
Ex: generate $\left(\varphi_{H}^{\prime}\right)^{-1}$ s.
Pf2-Ex

- $\varphi_{K}^{t} \varphi_{H}^{t}$ is generated by $K_{t}+H_{t} \circ\left(\varphi_{*}^{t}\right)^{-1}$
- $\left(\varphi_{H}^{z}\right)^{-1}-\cdots-\cdots-H_{t}\left(\varphi_{H}^{t}\right)^{-1} \pm$

should think of there on ∞ - dim Lie groups
on the level of Lie alsebras: vector Liels
Ham c Symp. Lic alophes
乡 Disure in intail
Ham vif. \subset Sympl. v.f.

$$
i_{x} \omega=\text { exact } \quad i_{x} \omega \text { dosed } \Leftrightarrow L_{x} \omega=0
$$

exact $1-x^{\omega}$ forms $c \quad$ cloxed ${ }^{i \times \omega}$-forms

$$
\Rightarrow \left\lvert\, \frac{\text { Synd. v.l. }}{\text { Mam vof }}=H^{\prime}\left(M_{j} ; \mathbb{R}\right)\right.
$$

$\operatorname{Con} H^{\prime}=0 \Rightarrow$ Sywp. ..f = How. v.f.

Ex. Shifts of π^{2}

$$
\begin{aligned}
& \pi^{2}=\mathbb{R}^{2} \mathbb{Z}^{2} \quad(x, y){ }^{4} \cos 2 d i n c t{ }^{41} \\
& \varphi:(x, y) \rightarrow(x+a, y) \quad \omega=d x+1 y
\end{aligned}
$$

coneroted by $X=a \frac{\partial}{\partial x}, y=y^{\prime}$
Symplectic but not haimiltonian:
$i_{x} \omega=a d y$ closed but not exocet
$\Rightarrow \quad \varphi \& \mathrm{Ham}$
what if \exists some other φ_{M}^{t} from id to φ ?

id
E.g. $a=1, \varphi=i d$ by $x=\frac{\partial}{\partial x} \neq 0$
But en bel $M=0$

In fact, in this case φ \& Ham and \quad sympor $/ \operatorname{Ham}=H^{\prime}\left(\pi^{2}, \mathbb{R}\right) / H^{\prime}\left(\pi^{2} ; \mathbb{Z}\right)$

$$
=\mathbb{R}^{2} / \mathbb{Z}^{2}
$$

$$
=\pi^{2}
$$

Non. obvious: flux, et
Maduf-Cola mon

Note: Mam v.f. $=\underbrace{e^{\infty}(m)}_{\rightarrow} / \mathbb{R}$ iictma
Lie algebra with cuter Poissa brocket

$$
\{H, K\}:=\omega\left(X_{+1}, X_{k}\right)=-\operatorname{dH}\left(X_{k}\right)
$$

Ex. Check th Jacobi id

- Prove Hent

$$
H \longmapsto x_{+1}
$$

is a Lir alg homo: $\{H, k\} \mapsto\left[X_{H}, X_{2}\right]$

$$
C^{\infty}(M) \longrightarrow \text { Maw. v.f. }
$$

- For $\mathbb{R}^{2 k}$

$$
\left\{\begin{array}{l}
\text { quodvolor } \\
\text { forme }
\end{array}\right\} \stackrel{\cong}{\cong} \operatorname{sp}(2 u)
$$

\$5 $\frac{\text { Submanifolds of }}{\text { symplectic monifolds }} \frac{\text { Lecture } 7}{10 / 14-2021}$
Lineon algebvar
$\left(v^{2 n} \omega\right)$ syuplectir v.s. : $\mathbb{R}^{2 n}=\mathbb{R}^{n}, i=J$
$L \subset V$ limeer subspace, $d=\operatorname{dim} L$
Det symplectie orthogovel

$$
L^{\omega}=\{X \in V \mid \omega(X, Y)=0 \quad \forall Y \in L\}
$$

Obvious properties

$$
\begin{aligned}
& \text { - } \operatorname{dim}_{1} L^{\omega}=2 n-d \quad \text { most inpporet } \quad\left(L^{\omega}\right)^{\omega}=L
\end{aligned}
$$

Des. L is isotrapic if

$$
\operatorname{LcL} \omega \omega\left|\left.\right|_{L}=0 \quad \Rightarrow d \leq n\right.
$$

- L is coisotropry if

$$
L^{\omega} \subset L \quad<\quad<d \geqslant n
$$

- L is Lagrangion of

$$
L=L^{\omega}(\text { coiso } \& \text { iso }) \quad \Rightarrow d=h
$$

- L is symplectir if
$w)_{L}$ is vou.dy $\Leftrightarrow L^{\omega} n L=0$

Ex. - $\operatorname{dim} L=1 \Rightarrow$ isotropis

- Bódir $L=1 \Rightarrow$ coisotropic
- $L \subset \mathbb{C}^{n}$ couplex \Rightarrow syuplects

$$
J L=L \not \not k
$$

- LLagr $\Rightarrow L$ is real: JLnL $=0$

Prap Civen $L \Rightarrow$
3 Doiboux basis $e_{1}, f_{1}, \ldots, e_{n}, f_{n}$ s.t.

- L isotropric: $L=\operatorname{spon}\left(e_{1}, e_{2}, \ldots l d\right)$
- L coiso: $L=\operatorname{span}\left(l_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{k}\right)$
- L Lagr: $L=\operatorname{spon}\left(e_{1}, \ldots, l_{n}\right)$
- L sympl: $L=\operatorname{span}\left(l_{1}, f_{1}, \ldots, e_{k}, f_{k}\right)$

Con All Lagr. subsapes a conj. by $\operatorname{sp}(2 n)$ (Lituwise for other types with d fixed)
Rmil. $\quad V=L \Theta L^{\prime} \leftarrow$ Lagn

$$
\left.\left.\Rightarrow L^{\prime} \underset{\lessgtr}{\cong} L^{*} \omega\right|_{L} \quad\right\} \Rightarrow V=T^{*} L=L \times L^{*}
$$

Ex. L coisshopir L^{ω}
L/Lw syuplectic: Wred

$$
\begin{aligned}
& \omega_{\text {red }}(x, y)=\omega(\underbrace{\tilde{x}, \tilde{y}}) \text { lifts } \\
& \text { More gevevally }: L / \operatorname{Ln} L^{\omega}
\end{aligned}
$$

is syupleitic

Lagr. Grasswonkian

$$
\Lambda=\left\{L_{c} \mathbb{R}^{2 n} \mid \operatorname{Lag} n\right\}
$$

$$
\mathbb{R}^{24}=\mathbb{C}^{4}
$$

A manifold
chorts:

$$
L \oplus L^{\prime}=\mathbb{R}^{2 n} \text {-fixed }
$$

P tran some collechie l.g. Courdinete ea bspaes

$$
\begin{aligned}
u & =u_{L, L}=\left\{Y \not+L^{\prime} \mid Y \operatorname{Lagh}\right\} \\
Y & =\operatorname{Craph}\left(P: L \rightarrow L^{\prime}=L^{*}\right)
\end{aligned}
$$

$\left\{P: L \rightarrow L^{*}\right\rangle \leftrightarrow\{$ biliner faum β ow $L\}$

$$
P \longleftrightarrow \quad(x, y) \mapsto P(x)(y)=\beta
$$

Y Lagr $\Leftrightarrow \beta$ is symmchric
$U_{L, L} \longleftrightarrow$ quadrabir forms on L (symmetre motrices)

$$
\Rightarrow \operatorname{dim} \Lambda=\frac{n(n+1)}{2}
$$

