S3. Hamiltonian Dynomics:
Definitions, Basic feets, Exauples 10/05-2021
($M^{2 n}, \omega$) symplectic

- $H: \mathbb{R} \times M \longrightarrow \mathbb{R}$ - Hamiltonion
t

$$
H(t, \cdot)=H_{t}
$$

- Antonomous if ind of $t: H: M \longrightarrow \mathbb{R}$
- Often 1 -periodic in $t, S^{\prime}=\mathbb{R} / \mathbb{Z}$

$$
H: S^{\prime} \times M \rightarrow \mathbb{R} \quad H_{t+l}=H
$$

Def. Hamiltonian v.f. generated by H :

$$
\begin{aligned}
& { }^{{ }_{x}} \omega=-d H \quad \underbrace{}_{\text {Botop }} J!x_{n}-\text { nou-deg } \\
& { }_{\text {Dependent }} X_{H} \leadsto{ }^{\text {time-dependevt tlow" }}
\end{aligned}
$$

time dependent

$$
\begin{aligned}
& \varphi_{H}^{t} \leftarrow \text { Haniltonian } \\
& \text { How gevnered } \\
& \text { b H }
\end{aligned}
$$

Need not be difined for all t, and is not sometimes (collidions) but we will assume Et.s. (E.g. M is coupect, ete)
Runh. Doing dynamin, usually interested in $\varphi_{M}^{t}, t \in \mathbb{R}, M$ antonomons or $\varphi_{M}^{k T}, k \in \mathbb{N}, H$ time-depeklent

Exawoles
Ex 1. $\quad \mathbb{R}^{2 n}, \omega_{\text {stl }}=d p_{1} d q=\Sigma d p_{i} a d q_{i}$

$$
\left\{\begin{array}{l}
\dot{p}=-\frac{\partial H}{\partial q} \\
\dot{q}=\frac{\partial H}{\partial p}
\end{array} \Leftrightarrow X_{H}=-\frac{\partial H}{\partial q} \frac{\partial}{\partial p}+\frac{\partial H}{\partial p} \frac{\partial}{\partial q}\right.
$$

Checking $i_{x_{k}} \omega=-\frac{\partial H}{\partial q} d q-\frac{\partial H}{\partial p} d p=-d H$
Subexauple $\mathbb{R}^{2 n}=T^{*} \mathbb{R}^{n}=\mathbb{R}^{4} \times \mathbb{R}^{k}$

$$
\begin{aligned}
& H=\frac{1}{2 m}\|p\|^{2}+V(q)=\text { kinetre }+ \text { potentinal } \\
& \left\{\begin{array}{l}
\dot{p}=-\frac{\partial V}{\partial q} \Leftrightarrow|m \ddot{q}=-\nabla V| \text { Nontons fonce } \\
\dot{q}=\frac{1}{m}>\Leftrightarrow p=m \dot{q}
\end{array}\right.
\end{aligned}
$$

2. Cotengent bundle $M=T^{*} Q$, $\omega_{s t}$

$$
\begin{aligned}
& \begin{aligned}
& \text { Fix R.M. on Q } \quad T Q \leftrightarrow T^{x} Q \\
&<,\rangle
\end{aligned} \\
& H=\frac{1}{2}\langle,\rangle: T+Q \longrightarrow \mathbb{R} \\
& v \longleftrightarrow\left\langle v_{0}\right\rangle \\
& X_{H}=\text { glodeste sproy } \\
& \varphi_{M}^{t_{M}}=\text { geodesic flow } \\
& \text { Describe. }
\end{aligned}
$$

3. Twisted cotangent bundle

$$
\begin{aligned}
& M=T^{*} Q, \omega=\omega_{\text {st }}+\pi^{*} \sigma \\
& \quad \downarrow \pi, \sigma^{2}, d \sigma=0 \\
& Q, \sigma^{2}, d i c h r \text { field } \\
& H=\frac{1}{2}\langle,\rangle
\end{aligned}
$$

The flow governs the motion of a charge on Q in maquetre bield σ.
Subexauple a) $Q=\mathbb{R}^{2}, \quad \sigma=B d q_{1}, d q_{2}$ $\underset{\text { spore }}{\text { cont }} \rightarrow\left(q_{1}, q_{2}\right)^{\prime}$
\rightarrow Unit charge, wit mans
$\vec{B} \perp\left(q_{1}, q_{2}\right)$ plane, change is $\mathbb{R}^{2}(x, y) \quad q_{1}, q_{2}=(x, y)$
$H . E . \Leftrightarrow \quad \ddot{q}=B(q) J \dot{q} ; \quad J=\left(\begin{array}{cc}0 & -1 \\ 1 & v\end{array}\right)$
b) $Q=\mathbb{R}^{3}, \vec{B}=v . f$. on $\mathbb{R}^{3} \leftarrow$ magn. Field $\sigma=i \vec{B} d q_{1} \wedge d_{q_{2}} \wedge d_{\sigma_{3}}$

$$
d \sigma=0 \leftrightarrow \operatorname{div} B=0 \text { \} ~ a n e ~ o f ~ t h o ~ }
$$

H.E. $\Leftrightarrow \quad \ddot{q}=\dot{q} \times \vec{B}(q)<$ Lorentz force
(unit charge, unit meres)

Energy and w-couseration
Let φ_{M}^{t} be the Hom flow of H_{t}.
Prop
essential
(a) Energy conservotion

Assuwe Plut H is autonomons. Them

$$
\left(\varphi_{H}^{t}\right)^{*} H=H: \quad H\left(\varphi_{H}^{t}(p)\right)=\text { const } \forall P
$$

(b) "Intequal invoviant": Y_{n}^{t} is syuple otic

$$
\left(\varphi_{H}^{t}\right)^{*} \omega=\omega
$$

Cor. φ_{11}^{t} is vol. pueservivy: $\left(\varphi_{n}^{t}\right)^{*} \omega^{n}=\omega^{k}$

\Rightarrow Huse restrichies an dynomics

$$
\begin{aligned}
& \text { Pf. (a) } \frac{d}{d t} H\left(\varphi_{M}^{t}(p)\right)=\left(L_{x_{H}} H\right)(\underbrace{\varphi_{M}^{t}(p \prime)}_{x} \\
& =\left(i_{x_{H}} d d H^{0}+d_{i_{x_{H}}} d H\right)^{H}(.), \quad{ }^{x} \text { p.Ha } \\
& =d\left(-i_{x_{H}} i_{x_{n}} \omega\right)=d \widetilde{\omega\left(x_{H}, x_{H}\right)}=0 \\
& \text { ME: } \quad{ }^{\prime} X_{H} \mathrm{CO}=-d_{H}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \frac{d}{d t}\left(\varphi_{H}^{t}\right)^{*} \omega=\left(\varphi_{H}^{t}\right)^{*} L_{x_{H}} \omega \text { seepHas} \\
= & \left(\varphi_{H}^{t}\right)^{*}\left(d^{i} x_{H} \omega+i_{x_{H}} d \omega\right) \\
= & \left(\varphi_{M}^{t}\right)^{*} \underbrace{d(-d H)}_{H E}=0
\end{aligned}
$$

Ex. Prove the Prop usin a divect calculctior in Darboux cordivates.

Con $\operatorname{dim} M=2 \leftarrow$ scofece M autonomans sol e4 ODE
\Rightarrow integral enzves of φ_{+1}^{t} (unprovanetrived) "ave" leves $\underbrace{H=\text { const }}$.
"alg equetio"

Rrak Newtonicn wechonics:

- $\ddot{q}=F(q)$ Evergy consu $\Leftarrow\left\{\begin{array}{l}F \text { is conso: } \\ F=-\nabla V=-i i_{t} \text { of }\end{array}\right.$
- $\ddot{q}=F(q, \dot{q})$ as in Loventz

$$
\text { Energy couservetion } \Leftarrow F \perp \dot{q}
$$

Contiuning Exavples
4. Investigating the pendulum

$$
M=T^{*} S^{\prime}=\mathbb{R} \times \$_{a}^{1}
$$

$$
\text { on } \mathbb{R}^{2}=\stackrel{P}{P} \times \mathbb{R} \times \mathbb{R}
$$

$$
H=\frac{1}{2}|p|^{2}-\cos q t^{p}
$$

Phase pertrait:

$$
=\underbrace{\frac{1}{2}\left(p^{2}+q^{2}\right)+\cdots}
$$

- unstoble oscietelor
unsbble $\quad k=1, k=1$

$$
\ddot{q}=-\sin q
$$

Hooke is law:

$$
\ddot{q}=-q
$$

- stable

Givesturbehevior of integral cusves upto poramihizolia
Fuxther details - Ex (Not easy)
(a) $q \in(0, \pi) \quad H(0, q)=\cos q-1=h$
lintegral urve thvough $\underset{x}{(\underbrace{9}_{0}, 0)}$ is is $\{H=h$?

- Show that $T(h)$ moustone incress function frem $\sum_{h=0}$ to $\infty_{h=2}$ as $h \rightarrow 2$
$\binom{$ Compare with the havmonic oscillatu }{$H=\frac{1}{2}\left(p^{2}+q^{2}\right) \& T=$ coust }
- Find th Taylor exp of $T(h)$ et $k=0$
(b) Consider $D Y_{H}^{\top}: T_{x} \mathbb{R}^{2} ?$

Show that $D_{\varphi_{H}^{\top}}^{H_{n}}=\left(\begin{array}{ll}1 & \lambda \\ 0 & 1\end{array}\right) \neq 0$
(c) Find explicilly $\varphi_{M}^{t}(0,2)$ in elemanteg Revchious
Ex Hint to a): Aven-period velction
$H: \mathbb{R}^{2} \rightarrow \mathbb{R}$ proper

- $\{H \leqslant h\}$ councuted

$$
\begin{aligned}
& h \text { - vegulow } \\
& A(h)=\text { aver of }\{H \leqslant h\}=\int_{H} w \\
& T(h)=\text { period of }\{H=h\}
\end{aligned}
$$

show that $\frac{d A}{d h}=T(h)$
5. Positivi-Def quadratic Ham lecture 5 10/07-2021

$$
\begin{gathered}
\mathbb{R}^{2 n}=\mathbb{C}^{n} \quad z_{j}=p_{j}+i q_{j}, \quad z=\left(z_{n}, z_{i}\right) \\
M=\frac{1}{2} \sum \lambda_{j}\left(p_{j}^{2}+q_{j}^{2}\right)=\frac{1}{2} \sum \lambda_{j}\left|z_{j}\right|^{2} \\
0 \text { or just } \neq 0
\end{gathered}
$$

Gouverus n uncoupled oscillators with frequecies λ_{j}
$E=\{H=h\}$ is an ellipsoid

- Find X_{n} and Show that $\varphi_{M}^{t}(z)=\left(e^{\lambda_{i} i t} z_{1}, \ldots, e^{\lambda_{n} i t} z_{n}\right)$
- "Coordinte axis" ($\left.0, \ldots, z_{j}, 0, \ldots 0\right) \cap E$ ave pentode abib of φ_{M}^{t} with $T_{j}=\frac{2 \pi}{\lambda_{j}}$
- Are then other peciodor refits? (The answer depends on $\left(\lambda_{1}, \ldots, \lambda_{4}\right)$).

6. Linean HE

$$
\begin{aligned}
& M=\mathbb{R}^{2 n}, \quad \omega=\omega_{s t}=d p_{n} d q \\
& =\mathbb{P}^{n} \text { Matrix of } \omega \text { : }
\end{aligned}
$$

$H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ querdratic form

$$
\begin{aligned}
& H(x)=\frac{1}{2}\langle A x, x\rangle, \quad A^{\top}=A \\
& A=\nabla H
\end{aligned}
$$

HE: $\quad \dot{x}=J \nabla H(x)=J A x=X_{H}(x)$

$$
\varphi_{H}^{t}(x)=\exp (t J A) x \quad \begin{aligned}
& \text { Discuks a bit } \\
& \text { Liedlg Liegps }
\end{aligned}
$$

exp: $\operatorname{sp}(2 n) \longrightarrow S_{p}(2 n)$

$$
x_{H} \longmapsto \varphi_{M}
$$

$$
\begin{align*}
\operatorname{sp}(2 n) & =\text { lin Mam } v . f \text {. } \\
& =\text { quadratir fovius on } \mathbb{R}^{2 n}=0 \\
& X H M=-\frac{1}{2}\langle J X x, x\rangle \tag{24}
\end{align*}
$$

Normal forms
Discurse lineon ala $\operatorname{sp}(2 n) \operatorname{sp(2n)}$

- Solving ODE'S: $\dot{x}=P_{x}$ vis SL

Bring A to a Jordan form $\quad P^{J P^{\top}}=J$ to calurlote $\exp (P t) x \quad \underset{p \in S_{p}(2 u)}{ }$

- symplectre normal forms are move compliceted Q summphic

$$
{ }_{n}^{S Q} S^{T} \leadsto \operatorname{diag}(1, \ldots, 1,0 \ldots 0)
$$

$$
G L(n)
$$

$$
\begin{aligned}
& S Q S^{T} \leadsto \operatorname{diog}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \\
& \hat{O}(n)
\end{aligned}
$$

$$
\begin{gathered}
\text { SQS } \\
n \\
\text { mud } \\
\text { bist }
\end{gathered}
$$

$$
\text { Sp(2n) Not just } \sum \lambda_{j}\left|z_{j}\right|^{2}
$$

Runh. Trless $A>0$, then it con be diagovalized'

