Mathematics 23B; Winter 2015; V. Ginzburg Practice Midterm

- 1. For each of the ten questions below, state whether the assertion is *true* or *false*. (You do not need to justify your answer.)
 - (a) The area of the region D is equal to $\iint_D dA$.
 - (b) The change of variable formula reads:

$$\iint_D f(x,y) \, dx \, dy = \iint_{D^*} f(x(u,v),y(u,v)) \frac{\partial(x,y)}{\partial(u,v)} \, du \, dv.$$

- (c) The area of the region bounded by the curves $y = x^2 1$ and y = 0 is equal to $\int_{-1}^{1} (x^2 1) dx$.
- (d) Let ρ , ϕ , and θ be spherical coordinates. Then

$$\left| \frac{\partial(x, y, z)}{\partial(\rho, \theta, \phi)} \right| = \rho^2 \sin \phi.$$

- (e) Every one-to-one map is necessarily onto.
- (f) The Jacobian of the map T(u, v) = (au + bv, cu + dv) is ad + bc.
- (g) Let D be the region given by the inequalities $a \leq y \leq b$ and $\gamma_1(y) \leq x \leq \gamma_2(y)$. Then

$$\iint_D f(x,y) \, dx \, dy = \int_a^b \int_{\gamma_1(y)}^{\gamma_2(y)} f(x,y) \, dy \, dx.$$

(h) The average of the function f(x, y, z) over the region W is

$$\frac{\iiint_W f(x,y,z) \, dV}{\iiint_W \, dV}.$$

- (i) Every bounded function on the region D is integrable.
- (j) $\iint_D x^7 \sin^2 y \, dx \, dy = 0$, where D is given by $x^2 + y^2 \le 64$ and $y \ge 0$.
- 2. Evaluate the following double integrals:
 - (a) $\iint_D y^3 dx dy$, where the region D is given by the inequalities $0 \le x \le 1$ and $-e^x \le y \le e^x$.
 - (b) $\iint_D xy \, dA$, where the region D is bounded by $y = 2\sqrt{2}x^2$ and $y = \sqrt{x}$.

- 3. Evaluate the following triple integrals:
 - (a) $\iiint_W \frac{1}{xyz} dx dy dz$, where $W = [1, e] \times [1, e] \times [1, e]$.
 - (b) $\iiint_W z \, dV$, where W is the region in the first octant bounded by the cylinder $x^2 + y^2 = 9$ and the planes y = z, x = 0 and z = 0.
- 4. Evaluate
 - (a) $\iint_D \cos(x^2 + y^2) dx dy$, where the region D is given by the inequalities $0 \le y \le x$ and $x^2 + y^2 \le \pi^2$.
 - (b) $\iiint_W e^{(x^2+y^2+z^2)^{\frac{3}{2}}} dV$, where W is the ball of radius 2 centered at the origin.
- 5. Find the volume of the solid that is bounded by the paraboloid $z=9-x^2-y^2$, the xy-plane and the cylinder $x^2+y^2=4$.