
Math 23B Practice Final Answers - 2011 (Courtesy of Victor Dods)

1(a). True. The area of a surface is given by the expression
∫ ∫

S
1 dS, and since we have a parametrization

φ (x, y) = (x, y, f (x, y)) with S = φ (D), this expands as∫ ∫
S

1 dS =

∫ ∫
D

1 ‖Tx × Ty‖ dAxy

=

∫ ∫
D

∥∥∥∥(−∂f∂x ,−∂f∂y , 1
)∥∥∥∥ dAxy =

∫ ∫
D

√(
∂f

∂x

)2

+

(
∂f

∂y

)2

+ 1 dAxy,

as desired. �

1(b). False. The theorem statement is correct except that the orientation of S should be outward (referring
to its unit normal vector field). �

1(c). True. The sphere is symmetric in the z direction (meaning if you flip it upside-down, it’s the same
surface), and the integrand is odd with respect to z. Therefore the integral is 0.

More concretely, if one were to parameterize the surface and set it up as a double integral, perhaps
using cylindrical coordinates (in which the equation of a sphere is r =

√
1− z2), one would have a

symmetric region D in θz-space, and the integrand would still be odd with respect to z. �

1(d). False. This is the Jacobian determinant for spherical coordinates (though using the letter r instead
of the commonly used ρ). The Jacobian determinant for cylindrical coordinates is simply r. �

1(e). False. A counterexample is f (x) = (x+ 1)x (x− 1), which is a cubic polynomial and is therefore
onto (extending down forever as x decreases, extending up forever as x increases), but it has 3 x-axis
intercepts, so it doesn’t pass the horizontal line test. �

1(f). False. ∫ ∫
S

f dS =

∫ ∫
D

f (φ (u, v)) ‖Tu × Tv‖ dAuv,

which doesn’t change sign if the direction of the normal vector Tu×Tv changes, because the magnitude
of a vector is never negative. �

1(g). True, with the caveat that the boundary ∂D is positively oriented. �

1(h). True. Given a parameterization S = φ (D),∫ ∫
S

F · dS =

∫ ∫
D

F · (Tu × Tv) dAuv =
∫ ∫

D

F · (Tu × Tv)
‖Tu × Tv‖
‖Tu × Tv‖

dAuv

=

∫ ∫
D

F · (Tu × Tv)
‖Tu × Tv‖

‖Tu × Tv‖ dAuv =
∫ ∫

D

(F · n) ‖Tu × Tv‖ dAuv =
∫ ∫

S

(F · n) dS,

as desired. �

1(i). False. There are several ways to show this (take a look at page 551 in Marsden and Tromba). The most
straightforward way is showing that the curl of a vector field is zero (extending it to a vector field on R3

if necessary), but this requires the domain on which the vector field is defined to be simply connected
(meaning there are no “holes” in the domain). This vector field is not defined at (x, y) = (0, 0), and
therefore there is a “hole” at the origin (which extends to the entire z axis when considering an R3

vector field). So the curl test can’t be used here.

In this case, if we can find a closed curve whose line integral is nonzero, we can show that the vector
field is not conservative. Typically we want to pick an easy curve that goes around the “hole”.
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Take the unit circle for example, oriented counterclockwise (the orientation is not important here, so
long as the resulting integral is nonzero). The parametrization is γ (t) = (cos t, sin t), for t ∈ [0, 2π],
giving γ′ (t) = (− sin t, cos t). Then∫

γ

F · ds =
∫ 2π

0

F (γ (t)) · γ′ (t) dt =
∫ 2π

0

(
− sin t

cos2 t+ sin2 t
,

cos t

cos2 t+ sin2 t

)
· (− sin t, cos t) dt

=

∫ 2π

0

(− sin t, cos t) · (− sin t, cos t) dt =

∫ 2π

0

sin2 t+ cos2 t dt =

∫ 2π

0

1 dt = 2π 6= 0.

The integral is nonzero, so F can’t be conservative (i.e. there is no function g : R3 → R so that
∇g = F ). �

1(j). True. We also have ∇× (∇f) = 0 for any twice-differentiable function f : R3 → R. In the diagram,

∇ curl div
{scalar functions} → {vector fields} → {vector fields} → {scalar functions}

applying any two arrows consecutively (i.e. applying the ∇ and then the curl operator, or applying
the curl and then the div operator) always gives zero. �

2. The region D is both x and y simple (draw a picture), bounded above by y = sinx and below by y = 0
(integrating as a y-simple region will be easier). In this problem, even though it states the integral
with dx first and dy second, don’t think that you’re forced to integrate x first. This notation really
only means integrating over the region D using the variables x and y, using whatever setup you like.∫ ∫

D

(cosx− y) dx dy =

∫ ∫
D

(cosx− y) dA =

∫ π

0

∫ sin x

0

(cosx− y) dy dx

=

∫ π

0

[
y cosx− 1

2
y2
]sin x
0

dx =

∫ π

0

(
sinx cosx− 1

2
sin2 x

)
−
(
0 cosx− 1

2
02
)
dx

=

∫ π

0

1

2
sin (2x)− 1

2

(
1− cos (2x)

2

)
dx =

∫ π

0

1

2
sin (2x)− 1

4
+

1

4
cos (2x) dx

Here we could do a u-sub, or guess the antiderivatives of sin (2x) and cos (2x) and check our guesses by
taking their derivatives; we get − 1

2 cos (2x) and 1
2 sin (2x) respectively. But notice that the period of

sin (2x) and cos (2x) is π, and we’re integrating over exactly one period-length. Using their periodicity,
and the fact that their average value is 0 over a single period (this part is critical), we conclude that
the integrals over the sin (2x) and cos (2x) terms are zero (note that this is not true in general for
periodic functions, but only periodic functions whose average is zero).
Thus the above integral equals

∫ π
0
− 1

4 dx =
[
− 1

4x
]π
0
= −π4 . �

3. The paraboloid-bounded solid described in the problem is radially symmetric (meaning when rotated
about the z-axis, it is the same shape). Thus cylindrical coordinates would be a natural choice.
z = x2 + y2 = r2. We need to figure out which one of z = r2 or z = 4 is the lower bound and which is
the upper bound. At r = 0, z = r2 = 02 = 0 < 4, so z = r2 is the lower bound.
Again, just because the integral in the problem is presented as using dx dy dz, don’t be fooled into
thinking you must integrate a particular variable first. The freedom is yours to set up the integral
over W however you like. We’ll integrate z first, as the problem is presented clearly as a z-elementary
region. Let D be the projection of W into the xy-plane. This is simply a circle having radius 2 (this
is determined by computing the intersection of z = r2 and z = 4, which is r = 2). We must be sure to
remember the Jacobian of cylindrical coordinates; r.∫ ∫ ∫

W

z dx dy dz =

∫ ∫
D

∫ 4

r2
z dz r dArθ =

∫ 2π

0

∫ 2

0

∫ 4

r2
z dz r dr dθ
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=

∫ 2π

0

∫ 2

0

[
1

2
z2
]4
r2
r dr dθ =

1

2

∫ 2π

0

∫ 2

0

(
16− r4

)
r dr dθ =

1

2

∫ 2π

0

[
8r2 − 1

6
r6
]2
0

dθ

=
1

2

∫ 2π

0

32− 64

6
dθ =

1

2

(
32− 32

3

)∫ 2π

0

1 dθ =
1

2

(
64

3

)
2π,

finally equalling 64π
3 . �

4. Here we’re asked to find the surface area of a paraboloid, so we’ll use a surface integral. Specifically∫ ∫
S
1 dS. Because the surface is given by a graph, the parametrization is easy and we get to use a

shortcut which tells us what the surface integral element dS is.

φ (x, y) = (x, y, z) , with z = 9− x2 − y2

is the parametrization, noting that the region D over which this graph resides is bounded by the
intersection of z = 9 − x2 − y2 and z = 0, in other words, 9 − x2 − y2 = 0, implying x2 + y2 = 32, a
circle of radius 3. With f (x, y) = 9− x2 − y2. Then∫ ∫

S

1 dS =

∫ ∫
D

1

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dAxy =

∫ ∫
D

√
1 + (−2x)2 + (−2y)2 dAxy

∫ ∫
D

√
1 + 4 (x2 + y2) dAxy.

The x2 + y2 and the circular shape of D suggest polar coordinates; the above integral equals∫ 2π

0

∫ 3

0

√
1 + 4r2r dr dθ.

The inner integral is independent of θ, so the outer integral may be evaluated immediately, giving a
2π factor;

2π

∫ 3

0

√
1 + 4r2r dr.

A u-sub of u = 1 + 4r2 renders

2π

[
1

12

(
1 + 4r2

)3/2]3
0

=
π

6

[(
1 + 4 · 32

)3/2 − (1 + 4 · 02
)3/2]

=
π

6

(
373/2 − 1

)
.

The answer is positive, which is good because we were calculating surface area. �

5. For a picture of this thing, look at http://mathworld.wolfram.com/SteinmetzSolid.html

The cylinders are along the z and y axes, and therefore the shape is symmetric when the y and z
coordinates are changed. For each fixed value of x, the cross section of the solid is a square. What are
the bounds of this square?

x2 + y2 ≤ 1 =⇒ y2 ≤ 1− x2 =⇒ −
√
1− x2 ≤ y ≤

√
1− x2

and
x2 + z2 ≤ 1 =⇒ z2 ≤ 1− x2 =⇒ −

√
1− x2 ≤ z ≤

√
1− x2.

And of course, x only ranges between −1 and 1, as there is no cross section at other values of x. The
area of the square cross section is then

(
2
√
1− x2

)2
. Integrating area along length gives volume. The

volume of the solid is∫ 1

−1

(
2
√
1− x2

)2
dx =

∫ 1

−1
4
(
1− x2

)
dx =

∫ 1

−1
4− 4x2 dx.
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Notice that the function is even in x, and that the interval [−1, 1] over which we’re integrating is
symmetric. Thus the integral equals

2

∫ 1

0

4− 4x2 dx = 2

[
4x− 4

3
x3
]1
0

= 2

(
4− 4

3

)
= 2

(
12− 4

3

)
= 2 · 8

3
=

16

3
.

Sanity check: we were computing volume, so the answer should be positive, which it is. �

6. To evaluate a path integral over the sides of a triangle, we must come up with a curve parametrization
for each side. The orientation of the curve parametrization for a path integral doesn’t matter. The
sides given intersect at the points (0, 0), (0, 1) and (1, 0). Let the parametrizations be the following.

Along x = 0 : γ1 (t) = (0, t) with t ∈ [0, 1]
Along y = 0 : γ2 (t) = (t, 0) with t ∈ [0, 1]

Along x+ y = 1 : γ3 (t) = (t, 1− t) with t ∈ [0, 1] .

Then the path integral is∫
C

f ds =

∫
γ1+γ2+γ3

f ds =

∫
γ1

f ds+

∫
γ2

f ds+

∫
γ3

f ds

=

∫ 1

0

f (γ1 (t)) ‖γ′1 (t)‖ dt+
∫ 1

0

f (γ2 (t)) ‖γ′2 (t)‖ dt+
∫ 1

0

f (γ3 (t)) ‖γ′3 (t)‖ dt.

We’re also going to need the magnitude of the tangent vectors for each curve. γ′1 (t) = (0, 1) giving
‖γ′1 (t)‖ = 1. γ′2 (t) = (1, 0) giving ‖γ′2 (t)‖ = 1. γ′3 (t) = (1,−1) giving ‖γ′3 (t)‖ =

√
2. The above

integral equals ∫ 1

0

t cos (2π · 0) · 1 dt+
∫ 1

0

0 cos (2πt) · 1 dt+
∫ 1

0

(1− t) cos (2πt) · 2 dt

∫ 1

0

t dt+

∫ 1

0

0 dt+ 2

∫ 1

0

cos (2πt) dt− 2

∫ 1

0

t cos (2πt) dt

(the last integral can be done by parts with u = t and dv = cos (2πt) dt)

=

[
1

2
t

]1
0

+ 0 + 2

[
1

2π
sin (2πt)

]1
0

− 2

[
t

2π
sin (2πt) +

1

4π2
cos (2πt)

]1
0

=
1

2
+

2

2π
(sin (2π)− sin (0))− 2

[(
1

2π
sin (2π) +

1

4π2
cos (2π)

)
−
(

0

2π
sin (0) +

1

4π2
cos (0)

)]
=

1

2
+

2

2π
(0− 0)− 2

[(
1

2π
· 0 + 1

4π2
· 1
)
−
(
0 +

1

4π2
· 1
)]

.

Everything cancels out except the 1
2 . �

7(a). The main difficulty here is coming up with a parametrization for the ellipse. Note that an ellipse is
just a scaled circle. The ellipse in question is x2

32 + y2√
3
2 = 1, and in this form, the major and minor

axis lengths can be read clearly. In the x direction, it is 3. In the y direction, it is
√
3.

If we start with a circle parametrization p (t) = (cos t, sin t) with t ∈ [0, 2π], and scale it in the x
direction by 3 and in the y direction by

√
3, we get our parametrization.

C (t) =
(
3 cos t,

√
3 sin t

)
; C ′ (t) =

(
−3 sin t,

√
3 cos t

)
.
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∫
C

F ·ds =
∫ 2π

0

F (C (t))·C ′ (t) dt =
∫ 2π

0

(
−2
√
3 sin t− 6 cos t, 9 cos t+ 2

√
3 sin t

)
·
(
−3 sin t,

√
3 cos t

)
dt

=

∫ 2π

0

6
√
3 sin2 t+ 18 sin t cos t+ 9

√
3 cos2 t+ 6 sin t cos t dt

=

∫ 2π

0

6
√
3 · 1

2
(1− cos 2t) + 9 sin 2t+ 9

√
3 · 1

2
(1 + cos 2t) + 3 sin 2t dt

=

∫ 2π

0

15
√
3

2
+

3

2

√
3 cos 2t+ 12 sin 2t dt.

Here, since cos 2t and sin 2t are π-periodic and each of their average values is 0 over a period, and we’re
integrating over two whole periods, their contribution is zero. Thus the integral is[

15
√
3

2
t

]2π
0

=
15
√
3

2
2π.

The twos cancel out and the answer is 15
√
3π. �

7(b). Plug and chug. First, evaluate C ′ (t), which equals (− sin t, cos t, 1).∫
C

x dx+ y dy + z2 dz =

∫ 1

0

(cos t) (− sin t) + (sin t) (cos t) +
(
t2
)
(1) dt

=

∫ 1

0

− sin t cos t+ sin t cos t+ t2 dt =

∫ 1

0

t2 dt =

[
1

3
t3
]1
0

and the answer is 1
3 . �

8. The surface given is a graph. We can see this by using x2+y2+z2 = 1 to solve for z; z = ±
√
1− x2 + y2.

But using the condition z ≥ 0, we eliminate the ± and choose only the positive root. Given a graph,
there is a really easy parametrization Q (x, y) = (x, y, g (x, y)), where z = g (x, y). In this case,
g (x, y) =

√
1− x2 − y2. The domain for the parametrization is found by projecting the graph onto

the xy plane. The projection of the upper hemisphere is a disc, in this case having radius 1. Let this
be called D. Then ∫ ∫

S

F · dS =

∫ ∫
D

F (Q (x, y)) ·
(
−∂g
∂x
,−∂g

∂y
, 1

)
dAxy

(computing ∂g
∂x = 1

2 (−2x)
(
1− x2 − y2

)−1/2
= − x√

1−x2−y2
and ∂g

∂y = 1
2 (−2y)

(
1− x2 − y2

)−1/2
=

− y√
1−x2−y2

, and plugging in F (Q (x, y)))

=

∫ ∫
D

(x, y, 1)

(
x√

1− x2 − y2
,

y√
1− x2 − y2

, 1

)
dAxy =

∫ ∫
D

x2 + y2√
1− x2 − y2

+ 1 dAxy

=

∫ ∫
D

x2 + y2√
1− x2 − y2

dAxy +

∫ ∫
D

1 dAxy.

The second integral is simply the area of D, which is π · 12 = π. The first integral suggests polar
coordinates, because of the occurrence of x2 + y2 and the radially-symmetric shape of the region D.
Don’t forget the Jacobian! The above equals∫ 2π

0

∫ 1

0

r2√
1− r2

r dr dθ + π =

(∫ 1

0

r2√
1− r2

r dr

)(∫ 2π

0

1 dθ

)
+ π
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(the first integral can be done with the u-sub u = 1− r2, noting that in order to get rid of all instances
of r, we can solve for r2 = 1− u; u (0) = 1, u (1) = 0, du = −2r dr, so − 1

2 du = r dr)

=

(
−1

2

∫ 0

1

1− u√
u

du

)
(2π) + π =

(
−
∫ 0

1

u−1/2 − u1/2 du
)
π + π

=

(
−
[
2u1/2 − 2

3
u3/2

]0
1

)
π + π =

(
−
[
(0− 0)−

(
2− 2

3

)])
π + π

giving an answer of 7π
3 . �

9(a). We could compute ∇ × F directly (in which case we’d find that it equals (0, 0, 0)), or apply a little
theory: Notice that F is a gradient field – the component functions look similar – the i component is
missing x, the j component is missing y, the k component clearly involved a derivative of z2. Our guess
is that F = ∇

(
xyz2

)
. Computing ∇

(
xyz2

)
, we see that our guess is correct. With f (x, y, z) = xyz2,

we have F = ∇f . Then ∇× F = ∇× (∇f) = 0 because taking the curl of a gradient field is always
zero.

F is conservative because it is a gradient field. Another argument is that it is conservative because it
is defined on and differentiable on all of R3 and its curl is zero. �

9(b). This was found to be f (x, y, z) = xyz2 in the previous part.

Without the guess-and-check method though, in case it wasn’t obvious what the function f should
be, one could construct it as follows. Using the gradient theorem (which states that

∫
C
∇f · ds =

f
(
Cendpoint

)
− f

(
Cstartpoint

)
), we have

f (x, y, z) =

∫
C

∇f · ds+ f
(
Cstartpoint

)
,

where C is any path connecting Cstartpoint to (x, y, z). Because Cstartpoint is constant, f
(
Cstartpoint

)
is constant, and therefore doesn’t really matter in terms of finding f (all antiderivatives differ by a con-
stant term anyway). We can also take Cstartpoint to be arbitrary, say (0, 0, 0). The simplest curve be-
tween (0, 0, 0) and (x, y, z) is probably a straight line; C (t) = t (x, y, z) with t ∈ [0, 1]. C ′ (t) = (x, y, z).
Then

f (x, y, z) =

∫
C

∇f · ds =
∫ 1

0

F (C (t)) · C ′ (t) dt =
∫ 1

0

(
ty (tz)

2
, tx (tz)

2
, 2 (tx) (ty) (tz)

)
· (x, y, z) dt

∫ 1

0

t3xyz2 + t3xyz2 + 2t3xyz2 dt =

∫ 1

0

4xyz2t3 dt = 4xyz2
∫ 1

0

t3 dt = 4xyz2
[
1

4
t4
]1
0

,

which equals xyz2. Taking the gradient of this verifies that this is indeed an antiderivative of F (with
respect to the gradient). �

10. Let S be the triangle bounded by C. The problem states that it is oriented by the order of the points.
This gives a normal vector which points along the positive y axis (draw the figure and use the right-
hand rule), in other words, n (x, y, z) = (0, 1, 0). First we must make sure that F is differentiable,
otherwise curlF is not defined. Each component is a polynomial in x, y, z, so it is differentiable. Then
by Stokes’ theorem, ∫

C

F · ds =
∫ ∫

S

(curlF ) · dS =

∫ ∫
S

((curlF ) · n) dS.
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Now to compute curlF .

curlF =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

−xy −xz −yz

∣∣∣∣∣∣
= i

(
∂

∂y
(−yz)− ∂

∂z
(−xz)

)
− j

(
∂

∂x
(−yz)− ∂

∂z
(−xy)

)
+ k

(
∂

∂x
(−xz)− ∂

∂y
(−xy)

)
= i (−z + x)− j (0− 0) + k (−z + x) .

The integral is equal to ∫ ∫
S

(x− z, 0, x− z) · (0, 1, 0) dS =

∫ ∫
S

0 dS

which evaluates to 0. �

11. In order to use Gauss’ theorem, we must check that F is differentiable. It is, since its component
functions are polynomials. Let V denote the solid bounded by S. By Gauss’ theorem,∫ ∫

S

F · dS =

∫ ∫ ∫
V

divF dV =

∫ ∫ ∫
V

2x+ 2y + 2z dV.

The solid V is a cylinder having radius 2 and height 1, so cylindrical coordinates would be most natural
for this integral.

x = r cos θ

y = r sin θ

z = z

and the Jacobian is r. The bounds of integration in these coordinates are r ∈ [0, 2], θ ∈ [0, 2π] and
z ∈ [0, 1]. The integral equals∫ 2π

0

∫ 2

0

∫ 1

0

(2r cos θ + 2r sin θ + 2z) r dz dr dθ

= 2

∫ 2π

0

∫ 2

0

∫ 1

0

r2 cos θ + r2 sin θ + rz dz dr dθ

= 2

∫ 2π

0

∫ 2

0

∫ 1

0

r2 cos θ dz dr dθ + 2

∫ 2π

0

∫ 2

0

∫ 1

0

r2 sin θ dz dr dθ + 2

∫ 2π

0

∫ 2

0

∫ 1

0

rz dz dr dθ

= 2

(∫ 2π

0

cos θ dθ

)(∫ 2

0

r2 dr

)(∫ 1

0

1 dz

)
+2

(∫ 2π

0

sin θ dθ

)(∫ 2

0

r2 dr

)(∫ 1

0

1 dz

)
+2

(∫ 2π

0

1 dθ

)(∫ 2

0

r dr

)(∫ 1

0

z dz

)
.

But the integrals
∫ 2π

0
cos θ dθ and

∫ 2π

0
sin θ dθ are zero, so the first two terms go away. The above

equals

= 2

(∫ 2π

0

1 dθ

)(∫ 2

0

r dr

)(∫ 1

0

z dz

)
= 2 (2π)

[
1

2
r2
]2
0

[
1

2
z2
]1
0

= 4π

(
4

2

)(
1

2

)
,

which equals 4π. �
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