MIDTERM PRACTICE PROBLEMS, MATH 23A

- (1) Consider the following vectors: $\vec{a} = (-1, 0, 3)$, $\vec{b} = (2, 1, 0)$, $\vec{c} = (5, 1, -2)$ and $\vec{d} = (-2/\sqrt{5}, -1/\sqrt{5}, 0)$. In questions (a)-(c), indicate if the statement is true or false; you do **not** need to justify your answer.
 - (a) The vector \vec{a} is parallel to \vec{d} .
 - (b) The vector $\vec{a} + \vec{b}$ is perpendicular to \vec{c} .
 - (c) The vector \vec{d} is a unit vector in the direction of \vec{b} .
- (2) Let \vec{a} , \vec{b} , and \vec{c} be as above.
 - (a) Compute $a \times b$ and $\parallel \vec{a} \vec{b} \parallel$.
 - (a) Find a unit vector perpendicular to both \vec{a} and \vec{b} .
 - (b) Find the area of the parallelogram spanned by \vec{a} and \vec{c} .
 - (c) Find the volume of the parallelepiped spanned by \vec{a} , \vec{b} , and \vec{c} .
- (3) Evaluate

$$\left|\begin{array}{rrrr}1&2&3\\0&-1&2\\4&5&1\end{array}\right|$$

- (4) Find the equation of the line through (-1, 1, 0) and (2, 3, 4)
- (5) Show that the lines x = 4 t, y = 2t, z = 1 + t and x = 18 + 2t, y = -1 4t, z = 1 2t are parallel.
- (6) The planes -y + 2z = 7 and x + z = 1 intersect along a line.
 - (a) Find the equation of this line.
 - (b) Determine if this line intersect the line x = t, y = 2t 1, z = 0.
 - (c) Find the equation of the plane that contains the point P = (1, -1, 0) and is perpendicular to this line.
- (7) Describe the solid region bounded by the unit sphere $x^2 + y^2 + z^2 = 1$ and the elliptic cone $z = \sqrt{x^2 + y^2}$ in \mathbb{R}^3 using spherical coordinates, i.e., give the ranges of the coordinates ρ, θ and ϕ .
- (8) Find the distance from the point (1, 1, 1) to the plane 4x + 3z + 5 = 0.
- (9) Sketch the level surfaces and the graph of $f: \mathbb{R}^2 \to \mathbb{R}$ defined as f(x, y) = -xy.
- (10) Find the domain and the range of the function $f(x,y) = \sqrt{4 x^2 y^2}$. Sketch the level surfaces and the graph of this function.
- (11) Consider a $f: \mathbb{R}^3 \to \mathbb{R}$ defined by $f(x, y, z) = 4z^2 + x^2$.
 - (a) Find the domain and the range of f.
 - (b) Describe the level surfaces of the function f corresponding to the constant values c > 0, c = 0 and c < 0.
 - (c) Let g be the restriction of f to the xy-plane, i.e, g(x, y) = f(x, y, 0). Describe the level curves of the function g for the constant values c > 0, c = 0 and c < 0.

- (12) Describe (sketch) the surface in \mathbb{R}^3 determined by the equation:
 - (a) $y^2 = x 1$ (b) $z^2 = x^2 + y^2$ (b) $z = x^2 + y^2$

(13) Evaluate the following limits or explain why a limit fails to exist:

 $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2 + 1}$ $\lim_{x \to 0} e^{xy} - 1$ (a) $\lim_{(x,y)\to(0,0)}$ (b) $\lim_{(x,y)\to(1,0)}\frac{\sin y}{1-x}$ (c)

(14) Is the function defined as $\lim_{(x,y)\to(0,0)} \frac{y}{x^2+y^2}$ for $(x,y) \neq (0,0)$ and f(0,0) = 0 continuous at (0,0)? Justify your answer.

- (15) Find $\partial f/\partial x$ and $\partial f/\partial y$ if $f(u,v) = \frac{u^2 + v^2}{u^2 v^2}$, where $u(x,y) = e^{-x-y}$ and $v(x,y) = e^{xy}$.
- (16) Find all first order partial derivatives of the following functions:
 - (a) $f(x, y, z) = \tan(x^3 + 3zy)$
 - (b) $f(p,q) = e^{-p+q^4} + pq + 9$
- (17) Use the chain rule to compute the derivative of f with respect to t in (a) and (b): (a) $f(x,y) = \ln(x+y^2)$, where $x(t) = 3t^2$ and $y(t) = e^{-t}$
- (b) $f(x,y) = y \cos x$, where $x(t) = e^t$ and $y(t) = \cos t$ (18) Let $f(x,y,z) = xe^z + y^2 4$ and $x(t,s) = t^2 s$, $y(t,s) = \cos t$, $z(t,s) = \ln(st)$. Use the chain rule to compute $\partial f/\partial t$ and $\partial f/\partial s$.
- (19) Compute the second order partial derivatives $\partial^2 f / \partial x^2$, $\partial^2 f / \partial x \partial y$, $\partial^2 f / \partial y \partial x$ and $\partial^2 f / \partial y^2$ for the following functions:
 - (a) $f(x,y) = \cos(xy^2)$
 - (b) $f(x,y) = e^{-xy^2} + y^3x^4$
- (20) Determine the velocity and acceleration vectors and the equation of the tangent line for each of the following curves at the specified value of t:
 - (a) $\gamma(t) = (\sin(3t), \cos(3t), 2t^{3/2}); t = \pi$
- (b) $\gamma(t) = (\cos^2 t, 3t t^3, t); t = 0$ (21) Let $f(x, y) = \frac{e^z}{x^2 + y^2}.$
- - (a) Compute ∇f .
 - (b) Compute the directional derivative of f at (1, 1, 1) in the direction of the vector $\vec{n} =$ $(\vec{i} - \vec{j})/\sqrt{2}.$
- (22) Find the gradient and directional derivative of the function $f(x,y) = \ln(x^2 + y^2)$ at the point (-1, 1) in the direction of the vector $-\vec{j}$.
- (23) Find the equation of the tangent plane to the surface determined by the equation $y^3x y^3x = 0$ $xz^2 + z^5 = 9$ at the point P = (-1, 3, 2). Find a unit normal vector to this surface at P. There are two such vectors. Why?
- (24) If the vector $\vec{v} = (a^2, -2a, -1)$ lies in the tangent plane to the surface $z = e^x/y$ at the point (0, 1, 1), what is the value of the constant a?

 $\mathbf{2}$