MIDTERM PRACTICE PROBLEMS, MATH 23A

(1) Consider the following vectors: $\vec{a}=(-1,0,3), \vec{b}=(2,1,0), \vec{c}=(5,1,-2)$ and $\vec{d}=$ $(-2 / \sqrt{5},-1 / \sqrt{5}, 0)$. In questions $(a)-(c)$, indicate if the statement is true or false; you do not need to justify your answer.
(a) The vector \vec{a} is parallel to \vec{d}.
(b) The vector $\vec{a}+\vec{b}$ is perpendicular to \vec{c}.
(c) The vector \vec{d} is a unit vector in the direction of \vec{b}.
(2) Let \vec{a}, \vec{b}, and \vec{c} be as above.
(a) Compute $a \times b$ and $\|\vec{a}-\vec{b}\|$.
(a) Find a unit vector perpendicular to both \vec{a} and \vec{b}.
(b) Find the area of the parallelogram spanned by \vec{a} and \vec{c}.
(c) Find the volume of the parallelepiped spanned by \vec{a}, \vec{b}, and \vec{c}.
(3) Evaluate

$$
\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & -1 & 2 \\
4 & 5 & 1
\end{array}\right|
$$

(4) Find the equation of the line through $(-1,1,0)$ and $(2,3,4)$
(5) Show that the lines $x=4-t, y=2 t, z=1+t$ and $x=18+2 t, y=-1-4 t, z=1-2 t$ are parallel.
(6) The planes $-y+2 z=7$ and $x+z=1$ intersect along a line.
(a) Find the equation of this line.
(b) Determine if this line intersect the line $x=t, y=2 t-1, z=0$.
(c) Find the equation of the plane that contains the point $P=(1,-1,0)$ and is perpendicular to this line.
(7) Describe the solid region bounded by the unit sphere $x^{2}+y^{2}+z^{2}=1$ and the elliptic cone $z=\sqrt{x^{2}+y^{2}}$ in \mathbb{R}^{3} using spherical coordinates, i.e., give the ranges of the coordinates ρ, θ and ϕ.
(8) Find the distance from the point $(1,1,1)$ to the plane $4 x+3 z+5=0$.
(9) Sketch the level surfaces and the graph of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined as $f(x, y)=-x y$.
(10) Find the domain and the range of the function $f(x, y)=\sqrt{4-x^{2}-y^{2}}$. Sketch the level surfaces and the graph of this function.
(11) Consider a $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by $f(x, y, z)=4 z^{2}+x^{2}$.
(a) Find the domain and the range of f.
(b) Describe the level surfaces of the function f corresponding to the constant values $c>0$, $c=0$ and $c<0$.
(c) Let g be the restriction of f to the $x y$-plane, i.e, $g(x, y)=f(x, y, 0)$. Describe the level curves of the function g for the constant values $c>0, c=0$ and $c<0$.
(12) Describe (sketch) the surface in \mathbb{R}^{3} determined by the equation:
(a) $y^{2}=x-1$
(b) $z^{2}=x^{2}+y^{2}$
(b) $z=x^{2}+y^{2}$
(13) Evaluate the following limits or explain why a limit fails to exist:
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}+1}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{e^{x y}-1}{y}$
(c) $\lim _{(x, y) \rightarrow(1,0)} \frac{\sin y}{1-x}$
(14) Is the function defined as $\lim _{(x, y) \rightarrow(0,0)} \frac{y}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0)$ and $f(0,0)=0$ continuous at $(0,0)$? Justify your answer.
(15) Find $\partial f / \partial x$ and $\partial f / \partial y$ if $f(u, v)=\frac{u^{2}+v^{2}}{u^{2}-v^{2}}$, where $u(x, y)=e^{-x-y}$ and $v(x, y)=e^{x y}$.
(16) Find all first order partial derivatives of the following functions:
(a) $f(x, y, z)=\tan \left(x^{3}+3 z y\right)$
(b) $f(p, q)=e^{-p+q^{4}}+p q+9$
(17) Use the chain rule to compute the derivative of f with respect to t in (a) and (b):
(a) $f(x, y)=\ln \left(x+y^{2}\right)$, where $x(t)=3 t^{2}$ and $y(t)=e^{-t}$
(b) $f(x, y)=y \cos x$, where $x(t)=e^{t}$ and $y(t)=\cos t$
(18) Let $f(x, y, z)=x e^{z}+y^{2}-4$ and $x(t, s)=t^{2}-s, y(t, s)=\cos t, z(t, s)=\ln (s t)$. Use the chain rule to compute $\partial f / \partial t$ and $\partial f / \partial s$.
(19) Compute the second order partial derivatives $\partial^{2} f / \partial x^{2}, \partial^{2} f / \partial x \partial y, \partial^{2} f / \partial y \partial x$ and $\partial^{2} f / \partial y^{2}$ for the following functions:
(a) $f(x, y)=\cos \left(x y^{2}\right)$
(b) $f(x, y)=e^{-x y^{2}}+y^{3} x^{4}$
(20) Determine the velocity and acceleration vectors and the equation of the tangent line for each of the following curves at the specified value of t :
(a) $\gamma(t)=\left(\sin (3 t), \cos (3 t), 2 t^{3 / 2}\right) ; t=\pi$
(b) $\gamma(t)=\left(\cos ^{2} t, 3 t-t^{3}, t\right) ; t=0$
(21) Let $f(x, y)=\frac{e^{z}}{x^{2}+y^{2}}$.
(a) Compute ∇f.
(b) Compute the directional derivative of f at $(1,1,1)$ in the direction of the vector $\vec{n}=$ $(\vec{i}-\vec{j}) / \sqrt{2}$.
(22) Find the gradient and directional derivative of the function $f(x, y)=\ln \left(x^{2}+y^{2}\right)$ at the point $(-1,1)$ in the direction of the vector $-\vec{j}$.
(23) Find the equation of the tangent plane to the surface determined by the equation $y^{3} x-$ $x z^{2}+z^{5}=9$ at the point $P=(-1,3,2)$. Find a unit normal vector to this surface at P. There are two such vectors. Why?
(24) If the vector $\vec{v}=\left(a^{2},-2 a,-1\right)$ lies in the tangent plane to the surface $z=e^{x} / y$ at the point $(0,1,1)$, what is the value of the constant a ?

