MATH 23A, REVIEW PROBLEMS FOR THE FINAL

- (1) Find the equation of the tangent plane to the surface determined by the equation $y^3x - xz^2 + z^5 = 9$ at the point P = (-1, 3, 2).
- (2) If the vector $\mathbf{v} = (a^2, -2a, -1)$ lies in the tangent plane to the surface $z = e^{x}/y$ at the point (0, 1, 1), what is the value of the constant a?
- (3) Find the directional derivative of the function $f(x, y) = \ln(x^2 + y^2)$ at the point (-1, 1) along the direction of the vector $\mathbf{v} = (3\mathbf{i} + 4\mathbf{j})/5$.
- (4) Find Df and the Hessian matrix Hf for the following functions at the given points. Find also the second order Taylor formula for these functions at the given points.

 - (a) $f(x,y) = (x-y)^2$; (0,0) (b) $f(x,y) = e^{(y+3)^2} \cos x$; (0,-3)
- (b) $f(x,y) = c^{-1} \cos x$, (c), (c) (c) $f(x,y) = \frac{\sin x}{y}$; $(\pi/2, 1)$ (5) Find the critical points of the functions (a)-(e), and classify them. (a) $f(x,y) = 3y^2 + 2xy + 2y + x^2 + x + 4$ (b) $f(x,y) = e^{1+x^2-y^2}$

 - (c) f(x,y) = (x-y)(xy-1)(d) $f(x,y) = x^3 + y^2 6xy + 6x + 3y$

 - (e) $f(x, y) = x \sin y$
- (6) Determine whether $f(x, y) = x^4 y^4$ has a local and an absolute maximum, a minimum, or neither.
- (7) Find the absolute maximum and minimum values for f(x,y) = $\cos x + \sin y$ on the rectangle $R = [0, 2\pi] \times [0, 2\pi]$.
- (8) Find the point in the plane 2x y + 2z = 20 nearest the origin. (9) Find the points on the ellipse $x^2 + 2y^2 = 1$ where f(x, y) = xy has its extreme values.
- (10) Find the absolute maximum and minimum values for $f(x, y) = x^2 + y^2$ $xy + y^2$ on the unit disk $D = \{(x, y) | x^2 + y^2 \le 1\}$. Use the method of Lagrange multipliers on the boundary.
- (11) Find the absolute maximum and minimum values for $f(x, y) = x^2 + x^2 + y^2 +$ $3y^2 + 2y$ on the unit disk $D = \{(x, y) | x^2 + y^2 \le 1\}$. Use the method of Lagrange multipliers on the boundary.
- (12) Find the arc-length of the graph of $y = \cosh x$ for $-\ln 2 \le x \le \ln 2$.
- (13) Find the arc-length of the path $\mathbf{c}(t) = (2\cos t, 2\sin t, t)$ for $0 \le t \le t$ 2π .
- (14) Show that the equation $x^4yz + y^4 + z^4 = 1$ is solvable for z as a function of (x, y) near (1, 1, 0). Compute $\partial z / \partial x$ and $\partial z / \partial y$ at (1, 1).

- (15) Compute the divergence and curl of the following vector fields \mathbf{F} , i.e., find $\nabla \cdot \mathbf{F}$ and $\nabla \times \mathbf{F}$.
 - (a) $\mathbf{F}(x, y, z) = x(\sin y)\mathbf{i} + \cos(x z)\mathbf{j} + z\mathbf{k}$
 - (b) $\mathbf{F}(x, y, z) = (x y)\mathbf{i} + (x + y)\mathbf{j}$
 - (c) $\mathbf{F}(x,y,z) = \ln(z+y^2)\mathbf{i} + e^{x-y}\mathbf{j} + z^3y\mathbf{k}$
- (16) Show that $\mathbf{F}(x,y) = (x-y)\mathbf{i} + (y-x)\mathbf{j}$ is a gradient vector field. Find a function f such that $\mathbf{F} = \nabla f$.
- (17) Let $\mathbf{F}(x, y) = x\mathbf{i} + x^2\mathbf{j}$ be the velocity field of a fluid in the plane. (a) Show that $\mathbf{c}(t) = (e^t, e^{2t}/2)$ is a flow line of **F**.

 - (b) Is **F** a gradient vector field? Justify your answer.
 - (c) Is the fluid expanding or compressing as it moves? Justify your answer.
- (18) Let $\mathbf{F}(x, y) = y\mathbf{i} + x\mathbf{j}$ be the velocity field of a fluid in the plane.
 - (a) Show that $\mathbf{c}(t) = (2e^t e^{-t}, 2e^t + e^{-t})$ is a flow line of **F**.
 - (b) Is **F** a gradient vector field? Justify your answer.
 - (c) Is the fluid expanding or compressing as it moves? Justify your answer.

There will also be True/False questions on the final exam.