MATH 23A, REVIEW PROBLEMS FOR THE FINAL

(1) Find the equation of the tangent plane to the surface determined by the equation $y^{3} x-x z^{2}+z^{5}=9$ at the point $P=(-1,3,2)$.
(2) If the vector $\mathbf{v}=\left(a^{2},-2 a,-1\right)$ lies in the tangent plane to the surface $z=e^{x} / y$ at the point $(0,1,1)$, what is the value of the constant a ?
(3) Find the directional derivative of the function $f(x, y)=\ln \left(x^{2}+y^{2}\right)$ at the point $(-1,1)$ along the direction of the vector $\mathbf{v}=(3 \mathbf{i}+4 \mathbf{j}) / 5$.
(4) Find $D f$ and the Hessian matrix $H f$ for the following functions at the given points. Find also the second order Taylor formula for these functions at the given points.
(a) $f(x, y)=(x-y)^{2} ;(0,0)$
(b) $f(x, y)=e^{(y+3)^{2}} \cos x ;(0,-3)$
(c) $f(x, y)=\frac{\sin x}{y} ;(\pi / 2,1)$
(5) Find the critical points of the functions $(a)-(e)$, and classify them.
(a) $f(x, y)=3 y^{2}+2 x y+2 y+x^{2}+x+4$
(b) $f(x, y)=e^{1+x^{2}-y^{2}}$
(c) $f(x, y)=(x-y)(x y-1)$
(d) $f(x, y)=x^{3}+y^{2}-6 x y+6 x+3 y$
(e) $f(x, y)=x \sin y$
(6) Determine whether $f(x, y)=x^{4} y^{4}$ has a local and an absolute maximum, a minimum, or neither.
(7) Find the absolute maximum and minimum values for $f(x, y)=$ $\cos x+\sin y$ on the rectangle $R=[0,2 \pi] \times[0,2 \pi]$.
(8) Find the point in the plane $2 x-y+2 z=20$ nearest the origin.
(9) Find the points on the ellipse $x^{2}+2 y^{2}=1$ where $f(x, y)=x y$ has its extreme values.
(10) Find the absolute maximum and minimum values for $f(x, y)=x^{2}+$ $x y+y^{2}$ on the unit disk $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$. Use the method of Lagrange multipliers on the boundary.
(11) Find the absolute maximum and minimum values for $f(x, y)=x^{2}+$ $3 y^{2}+2 y$ on the unit disk $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$. Use the method of Lagrange multipliers on the boundary.
(12) Find the arc-length of the graph of $y=\cosh x$ for $-\ln 2 \leq x \leq \ln 2$.
(13) Find the arc-length of the path $\mathbf{c}(t)=(2 \cos t, 2 \sin t, t)$ for $0 \leq t \leq$ 2π.
(14) Show that the equation $x^{4} y z+y^{4}+z^{4}=1$ is solvable for z as a function of (x, y) near $(1,1,0)$. Compute $\partial z / \partial x$ and $\partial z / \partial y$ at $(1,1)$.
(15) Compute the divergence and curl of the following vector fields \mathbf{F}, i.e., find $\nabla \cdot \mathbf{F}$ and $\nabla \times \mathbf{F}$.
(a) $\mathbf{F}(x, y, z)=x(\sin y) \mathbf{i}+\cos (x-z) \mathbf{j}+z \mathbf{k}$
(b) $\mathbf{F}(x, y, z)=(x-y) \mathbf{i}+(x+y) \mathbf{j}$
(c) $\mathbf{F}(x, y, z)=\ln \left(z+y^{2}\right) \mathbf{i}+e^{x-y} \mathbf{j}+z^{3} y \mathbf{k}$
(16) Show that $\mathbf{F}(x, y)=(x-y) \mathbf{i}+(y-x) \mathbf{j}$ is a gradient vector field. Find a function f such that $\mathbf{F}=\nabla f$.
(17) Let $\mathbf{F}(x, y)=x \mathbf{i}+x^{2} \mathbf{j}$ be the velocity field of a fluid in the plane.
(a) Show that $\mathbf{c}(t)=\left(e^{t}, e^{2 t} / 2\right)$ is a flow line of \mathbf{F}.
(b) Is F a gradient vector field? Justify your answer.
(c) Is the fluid expanding or compressing as it moves? Justify your answer.
(18) Let $\mathbf{F}(x, y)=y \mathbf{i}+x \mathbf{j}$ be the velocity field of a fluid in the plane.
(a) Show that $\mathbf{c}(t)=\left(2 e^{t}-e^{-t}, 2 e^{t}+e^{-t}\right)$ is a flow line of \mathbf{F}.
(b) Is \mathbf{F} a gradient vector field? Justify your answer.
(c) Is the fluid expanding or compressing as it moves? Justify your answer.

There will also be True/False questions on the final exam.

