Math 235, Dynamical Systems
Winter 2022
Lecture 1
\rightarrow Go through basic info 01/04-2022

* No exams no how
* Problems steted in lectures $\}$
into them how much they take home *OH: by appointment

Plan:

- basic concepts and examples
- elements of ergodic theory
- maps of s^{\prime}, the Denjoy example
- local normal forms, Martman-Grobmon and local arealysis 7 , Dis
- hyperbolicity, horseshoes
- topological entropy
- Not a comprehensive course detail
- Examples are often non-trivial and very important

Math 235, Dynamical Systems, Winter 2022

- Lectures: TTh 1:30-3:05 PM, McHenry Clrm 1279 (the first two weeks remotely)
- Instructor: Viktor Ginzburg; office: McHenry 4124
email: ginzburg(at)ucsc.edu
- Office Hours: TBA or by appointment
- Text: There will be no "official" textbook in this course. Some suggested reading and references:
\rightarrow ○ Introduction to the Modern Theory of Dynamical Systems by A. Katok and B. Hasselblatt;
$\rightarrow \circ$ Geometrical Methods in the Theory of Ordinary Differential Equations by V.I. Arnold;
$\longrightarrow \circ$ Lectures on Dynamical Systems by E. Zehnder;
\rightarrow - Measure and Category by J.C. Oxtoby; more analysit \& top dynamics
$\rightarrow \circ$ Ergodic Theory by I.P. Cornfeld, S.V. Fomin and Y.G. Sinai;
$\rightarrow \circ$ Lecture Notes on Ergodic Theory by C. Walkden;
- Dynamical Systems by C. Robinson.
- Tentative Syllabus: This course will be a potpourri of dynamical systems, focusing on examples and main concepts and notions rather than technical proofs of general theorems. I plan to discuss or at least briefly touch upon some of the following topics and concepts:
- elements of ergodic theory,
- topological entropy,
- structural stability,
- maps of the circle and the Denjoy example,
- local analysis and local normal forms,
- hyperbolic dynamical systems.

This will not be a comprehensive course in dynamical systems, but rather a non-technical overview of central notions and ideas. Examples are particularly important in dynamics and I will devote a lot of attention to them.

COVID-19 Information: Please take care to comply with all university guidelines about masking in indoor settings, performing daily symptom and badge checks, testing as required by the campus vaccine policy, self-isolating in the event of exposure, and respecting others' comfort with distancing. Please do not come to class if your badge is not green. If you are ill or suspect you may have been exposed to someone who is ill, or if you have symptoms that are in any way similar to those of COVID-19, please err on the side of caution and stay home until you are well or have tested negative after an exposure.

- Lecture notes (pdf files) The entire set (nearly 100 MB). Weekly:
- Week 1: Basic concepts; Examples: gradient flows, rotations of the circle, translations and linear flows on tori, the Kronecker theorem, geodesic flows
- Week 2: Examples continued: geodesic flows on surfaces of negative curvature, the shift transformation. Elements of Ergodic Theory: invariant measures, some examples, the Poincare recurrence theorem.

$$
p .27
$$

- Week 3: Elements of Ergodic Theory continued: the Birkhoff Ergodic Theorem; ergodicity and unique ergodicity; Examples: rotations of the circle (equidistribution), translations and linear flows on tori; toral automorphismns.
- Week 4: Elements of Ergodic Theory continued: mixing; Bernoulli shifts; existence of invariant measures (the Krylov-Bogolubov theorem); the Oxtoby-Ulam theorem.
- Week 5: Homeomorphisms of the circle: general discussion (equivalence, structurale stability, etc); ,the rotation number.

$$
p 109
$$

- Week 6: Homeomorphisms of the circle continued: properties of the rotation number; structurally stable diffeomorphisms of the circle; the Denjoy theorem; Digression: continuous vs differentiable functions. $p, 126$
- Weeks 7-8: Homeomorphisms of the circle continued: the Denjoy example; Diophantine vs. Liouville numbers; Herman's Theorem and small denominators (examples). Local analysis: setting; Lyapunov and asymptotic stability; Lypunov functions.
P. 139
- Week 9: Local analysis continued: asymptotic stability via linearization; non-degenerate and hyperbolic fixed points and equilibria; the Hartman-Grobman theorem (without proof); the linearization problem; resonances and the Poincare theorem on formal linearization) p. 163
- Week 10: Introduction to hyperbolic systems: horseshoes; hyperbolic maps and sets; structural stability_(Anosov theorem's on structural stability of hyperbolic toral endomorphisms). p. 178

51. Introduction
what is a dynamical system?

- M a topological space (reasonably good), usually compact, eng. a manifold
- $\rightarrow \varphi: M \rightarrow M$ a map, continuous al or smooth, often but not always
invertible. Interested in $\varphi^{k}, k \in A \mathbb{N}$ or \mathbb{Z} $\mathbb{N} \circ \mathbb{Z} \rightarrow C^{\circ}(M, M)$ on $C^{\infty}(M, M)$ ismingroup homomorphism flow on M

$\mathbb{R} \rightarrow$ Romeo (M) or Difleo (M) group homomorphism

$$
t \stackrel{\varphi}{t}, \quad \varphi^{t_{1}+t_{2}}=\varphi^{t_{1}} \varphi^{t_{2}}
$$

This set up models:

- $M=$ the sot of states of a (deterministic) system
- t $t=k=$ time
- $y^{t}, y^{k}=$ the evolution of the system

Rok con set

$$
\varphi=\varphi^{\top}
$$

- Basic source: ODE = v.f.
- M a manifold (leg. a domain in \mathbb{R}^{M})
- given a vo. = ODE, complete
- φ^{t} the flow of it:

$$
\varphi^{t}(x)=\operatorname{sol}_{\operatorname{cou} u d i t i o n} \text { with the }^{\prime}
$$

or $y=\varphi^{\top}$

- Dynerical systems $>$ ODE is But focus is different.

In DS we are interested in

- "global", geometrical features of φ_{2}
π qualitolive properties of φ
- not in determining $\varphi^{-2}(x)$ explicitly
E.g. The behavion of $\varphi^{t}(x)$ as $t \rightarrow \infty$ for x in a certain subset
- Does $y^{t}(x)$ comes bock to x ? How close? Fin "how kong" x ?
A variant: o M is a probohilitymeasure space
- y measure preserving
- Basic Definitions and Terminology Need some languge to tael about quobita hive properties
- $\left.\left\{\varphi^{k}(x) \mid k \in \mathbb{N} \mathbb{Z}\right\}\right\} \begin{gathered}\text { the orbit } \\ \text { of } x\end{gathered}$

$$
\begin{aligned}
& \left.\left\{y^{t}(x) \mid t \in \mathbb{R}\right\} \quad\right\} \text { positive sem } x
\end{aligned}
$$

Notation: $\theta(x)$
positive semiorbst

- x is a fixed pt if

$$
\underbrace{\underbrace{\varphi(x)}=x \quad \text { or } \varphi^{t}(x)=x \forall t}_{\Rightarrow \varphi^{k}(x)=x \forall k}
$$

- $\begin{aligned} x & \text { is a periodic point if } \exists \underbrace{n_{1} T} \\ \varphi^{(a)}(x) & =x \text { on } \varphi^{(x)}(x)=x\end{aligned}$

$$
\varphi^{(a)}(x)=x \text { on } \underbrace{}_{\text {period }}
$$

Rink - n is a period $\Rightarrow 2 n, 3 n$, etc are also periods

- \Rightarrow minimal peniod

Ex a fixed pt is also a periodic pt with minimal period 1

- The orbit through a periodic pt is a periodic orbit:

a periodic orbit with min period 3
- $\quad X \subset M$ is an invariant set if $y(x) \subset x$ or $y^{t}(x) \subset x \quad \forall t$ $\left(\Rightarrow \varphi^{2}(x) c x, k \in \lambda V\right)$ usually closed

Ex An orbit θ is on invariant subset θ is periodic $\Leftrightarrow \theta$ is closed
M is compact

- Y (on $\left.\varphi^{t}\right)$ is minimal if M has no cored invariant subsets
\Leftrightarrow even orbit is olense
Ex. φ minimal \Rightarrow no periodic orbits (M compact)
- $\varphi\left(0 r \varphi^{t}\right)$ is topologically transitive if \exists a cleanse orbit
\Leftrightarrow every inv. subset is nowhere dense
- x is recurrent if x comes beck to its arbitrarily small nod infinitely many times:

$$
\forall v_{9 x} \exists k_{i} \rightarrow \infty \text { sHH. } \varphi^{k_{i}}(x) \in V
$$

Ex. x is periodic

- the or bit through $\Rightarrow x$ is recurrent x is olense
- $\quad w$-limit set of x :

$$
\begin{aligned}
\omega(x) & =\left\{\text { all limits of } \varphi^{k i}(x), k_{i} \rightarrow \infty\right\} \\
& =\bigcap_{n=1}^{\infty}\left\{\overline{\left.\varphi^{k}(x) \mid k \geqslant n\right\}}, \underline{c l o s u 2}\right.
\end{aligned}
$$

α-limit set: similarly bur $-\infty$ similarly for flows
Ex. $\cdot \varphi^{k}(x) \underset{k \rightarrow \infty}{\longrightarrow} y \Leftrightarrow y=\omega(x)$

- x is periodic $\Leftrightarrow \omega(x)=\alpha(x)=\theta(x)$
$=$ The orbit through x
- the orbit Abroyh x is dense

$$
\Leftrightarrow \quad \omega(x)=M=\alpha(x)
$$

k invertible

- x is recurrent $\Leftrightarrow x \in \omega(x)=\alpha(x)$
- For flows

$$
\omega(x)=\bigcap\left\{\overline{\left.\varphi^{t}(x) \mid t \geqslant T\right\}}\right.
$$

is connected. $\geqslant 0$ EX

- Many more to follow

Some examples of DS

- Ex1 Gradient-like floos $-M$ is a closed manifold Doring DS.
- $f: M \xrightarrow{c^{\infty}} \mathbb{R}$
- $\frac{X=\text { gradient.like }}{l \geqslant 0}$ v.f.:

$$
\underbrace{\text { ont } f)}_{\{x=0\}=\operatorname{Only} \text { at } \operatorname{Crit}(f)}
$$

Ex. $X=\nabla f$ for some R.m.

$$
\begin{aligned}
\frac{d}{d t} f\left(\varphi^{t}(x)\right) & =L_{x} f\left(\varphi^{t}(x)\right)
\end{aligned}>0
$$

$$
\begin{aligned}
\Rightarrow \text { orecurvent pts } & =\text { periodir pls } \\
& =\text { fixed pls } \\
& =\text { Crit }(f)
\end{aligned}
$$

- No devs oubito
- $\forall x \quad \operatorname{co}(x) \subset \operatorname{Crit}(x)$

$$
\alpha(x) \subset \operatorname{Cnit}(x)
$$

If f is morre:
$\omega(x)$ is just ore critial pt
EX - havl
construct f such that

$$
\exists x \text { s.t. } \omega(x) \in \text { crit }(f)
$$ is a circle.

Ex2 Rototious of S \quad alreody much usore intevesting

$$
\begin{aligned}
\left\{^{\prime \prime}=\right. & \mathbb{R} / \mathbb{Z}=\{z=1\} \subset \mathbb{C} \\
\varphi: & \left.\right|^{\prime \prime} \rightarrow f^{\prime \prime} \\
& \theta \longmapsto \theta+\alpha \bmod \longmapsto \\
& \left.e^{2 \pi i \theta} \longmapsto e^{2 \pi i \theta} e^{2 \pi i \alpha}, \alpha \in\right\}^{\prime} \text { fixed }
\end{aligned}
$$

Pros - φ is periadic ($\varphi^{q}=$ id)
$\stackrel{s}{s} \Leftrightarrow \alpha \in \mathbb{Q} \quad: \alpha=\frac{p}{q}$ F
$\frac{\square}{\circ}$ evevy pt is of periodic)
 $\Leftrightarrow \quad \propto \& \mathbb{Q}$

Pf $\varphi^{k}(\theta)=\theta+k \alpha \bmod 1$

$$
\begin{align*}
& \Leftrightarrow \alpha \in Q: \alpha=\frac{p}{q} \\
& \Rightarrow \varphi^{q}(\theta)=\theta+q \frac{p}{q}=\theta+p=\theta \\
& \Rightarrow \varphi^{f}=i d: \varphi^{q}(\theta)=\theta+q \alpha=\theta \bmod 1 \\
& \Rightarrow q \alpha=p \in \mathbb{Z} \Rightarrow \alpha=\frac{p}{q} \tag{10}
\end{align*}
$$

- $\alpha \notin$ Look ot the orbit of $0=1$

$$
\begin{aligned}
& \Rightarrow \varphi^{k}(0)=k \alpha \neq 0 \text { in } \delta^{\prime \prime} \\
& \Rightarrow \varphi_{l \alpha}^{l}(0) \neq \varphi_{m \alpha}^{m}(0) \forall l, m \quad \underbrace{e^{l-m}(0)}_{(l-m) \alpha}=0 \bmod \mathbb{Z}
\end{aligned}
$$

$\Rightarrow \varphi^{k}(0)$ has a limit pt

$$
\Rightarrow \forall \varepsilon>0 \quad l_{0}, l_{1} \quad \text { st. }
$$

$$
0 \neq d\left(\varphi^{l_{0}}(0), \varphi^{e_{1}(0)}\right)<\varepsilon
$$

© distance ind $\$$, rotelion Enveriat

$$
\begin{aligned}
& l_{\text {limit }} p t \\
& \lambda=\varphi l_{1}-l_{0}(0) \\
&=0+l_{1} \alpha-\left(0+l_{0} \alpha\right) \\
&=\left(l_{1}-l_{0}\right) \alpha=\alpha^{\prime}
\end{aligned}
$$

is ε-core to $0 \in \oiint^{\prime}$

$$
\begin{aligned}
\Rightarrow & \vee \theta \in \$^{\prime} \\
& \varphi^{k\left(l_{1}-b_{0}\right)}(\theta)=\theta+k\left(l_{1}-l_{0}\right) \alpha
\end{aligned}
$$

is ε-dense
since ε is arbitron
\Rightarrow the orbit
is dense

Rank we will come bock to this example many times and rhine it.

Ex Prove that the decimal expansion of 2^{k} may begin with any finite sequence of digits:
Given $\lambda_{1} \ldots . \lambda_{s}=\lambda \exists$ s.t.

$$
2^{k}=\lambda_{1} \ldots \lambda_{s} \ldots
$$

Ex3 Translitions on coupect groups
G compant (mutrizoble) top gp e.g. a Lie gj

$$
\varphi(x)=\begin{array}{ll}
x \cdot \alpha \\
\text { right trokskios } & \alpha \in G \text { fixel }
\end{array}
$$

$\theta(1)=\left\{\alpha^{k} l k \in \mathbb{Z}\right\}$ subgroup use multiplichive notelinn
$\Rightarrow H=\overline{\theta(1)}$ is aclosed abelion subgroxp

$$
\begin{aligned}
\Rightarrow \theta(x) & =x \theta(1)=\text { transblion of } \theta(1) \\
\theta(x) & =x H=
\end{aligned}
$$

$\Rightarrow \varphi$ can be minimal only when G is abelian: $C=H=\widehat{\theta(1)}$
\Rightarrow when G is a hie gt then H need to know is an extension of \mathbb{Z}_{r} by π^{n} a bit of Lie

$$
\text { gits of Lie } 1 \rightarrow \pi^{n} \rightarrow H \rightarrow \mathbb{Z}_{r} \rightarrow 1
$$

connerted conejonent of id

Ex. $\quad G=S^{\prime}$
The only elosed subgroups are

- cyclic (roots of unity)
- gl
$\Rightarrow H$ can only ore of thu two types:
\rightarrow a cyclic subgroup $\Leftrightarrow \alpha \in \mathbb{Q}$

$$
\rightarrow H=S^{\prime} \Leftrightarrow \alpha \& Q
$$

To summarize $\varphi: G \rightarrow G, x \mapsto x \cdot \alpha$ \checkmark compact (oberon)

- either all orbits $\theta(x)=x \theta(1)$ are dense
- or wove of tu orbit ave deme:

$$
\begin{aligned}
& \theta(x) \cap V \neq \varnothing \Leftrightarrow \theta(1) \cap x^{-1} U \neq \varnothing \\
& x \theta(1)
\end{aligned}
$$

For grow tronslotien miviouol \Leftrightarrow top transitive

Ex4 Translations of π^{n}
Lecture 2
01/06-2022

$$
\text { - } \begin{aligned}
& T^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}=\underbrace{S^{\prime} \times \ldots \times S^{\prime}}_{\bmod ^{n} 1} \\
& \theta=\left(\theta_{1}, \ldots \theta_{n}\right) \quad \\
& \varphi: \pi^{n} \rightarrow \pi^{k} \quad, \quad \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)
\end{aligned}
$$

$$
\theta \longmapsto \theta+\infty \text { use additive nobkon }
$$

Now 3 more possililities: orbits need not be eithr deuse on peviodoc

$$
\text { But } \begin{aligned}
\theta(x) & =\left\{\varphi^{k}(x) \mid k \in \mathbb{Z}\right\}=\{x+k \alpha \mid k \in \mathbb{Z}\} \\
& =x+\theta(0)=x+\{k \alpha\} \\
\Rightarrow \quad \overline{\theta(x)} & =x+\overline{\theta(0)}
\end{aligned}
$$

clored abetion subgrous: of an oxinnsidi of

$$
\mathbb{Z}_{r} b_{y} \pi^{m \leq k}
$$

$\left\{\begin{array}{c}\text { - All obbits ave periodie } \\ \Leftrightarrow 0 \text { is peniodic }\end{array} \Leftrightarrow \varphi\right.$ is periodie

- All oubihs are deve $\} \Leftrightarrow \varphi$ is uninimal chovacterize ther two sitwakions $\frac{\text { transle lion }}{(n o m e s)}$ of a deuse set is deuse
- 0 is peviodir $\Leftrightarrow \alpha \in \mathbb{Q}^{k}$
$q \alpha=0 \bmod \mathbb{Z}$ for sove q $\Leftrightarrow\left(q \alpha_{1}, \ldots q \alpha_{n}\right)=0 \bmod \mathbb{Z}$

$$
\begin{aligned}
& \alpha i=\frac{P_{i}}{q_{i}} \uparrow i=1, \ldots, n \quad q=\operatorname{lcm}\left(q_{1}, \cdots, q_{n}\right) \\
& \alpha \in \mathbb{Q}^{n} \quad \varphi^{q^{n}}(0)=0
\end{aligned}
$$

- Prop φ is minimal $\Leftrightarrow 1, \alpha_{1, \ldots}, \alpha_{n}$ is livearly ind over \mathbb{Q} :

$$
\begin{gathered}
r_{j} \cdot 1+\sum_{i=1}^{n} r_{j} \alpha_{j}=0 \quad, \quad r_{j} \in \mathbb{Q} \Rightarrow a l l r_{j}=0 \\
\text { or } r_{j} \in \mathbb{Z} \quad F j_{j=0, \cdots, n}
\end{gathered}
$$

Ruk • \mathbb{R} is a v.s. over \mathbb{Q}

$$
\operatorname{dim}_{Q} \mathbb{R}=\infty \quad(\text { continuonm })
$$

$$
\operatorname{dim}_{Q} \underbrace{s p Q_{n}\left(1, \alpha_{1}, \ldots, \alpha_{n}\right)}_{\in \mathbb{R}}=n+1
$$

- can replace * by \mathbb{Z}

Rmal A lot conbe inbotween there two caes:
con heve

$$
\begin{align*}
& 1 \leqslant \operatorname{dim} Q^{\left(1, \alpha_{i}, \ldots, \alpha_{n}\right)} \leqslant n+1 \\
& \text { peniodir } \tag{16}\\
& \text { all } \alpha_{i} \in \mathbb{Q}
\end{align*}
$$

Ex. $n=1, \alpha \in \mathbb{R} / \mathbb{Z}, \alpha \in \mathbb{R}$ $1, \alpha$ linearly ind oven \mathbb{Q}

$$
\Leftrightarrow \alpha \notin \mathbb{Q}
$$

$\Leftrightarrow \varphi$ minimal $\Leftrightarrow \theta(0)$ is dene ${ }^{4}$ Last lecture

Pf Recall: for transitions of groups:

$$
\left\{\begin{array}{l}
\text { top transitive! } \\
\text { one deus orbit }
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{l}
\text { miviuwh } \\
\text { all orbits are deus }
\end{array}\right\}
$$

1) lin dependent \Rightarrow not minimal

$$
\begin{aligned}
& \begin{array}{l}
\sum{\underset{j}{j}}_{r_{j}}^{\alpha_{j}}=-r_{0} \in \mathbb{Z} \text { not all } r_{j} \neq 0
\end{array} \\
& f: \pi^{h} \rightarrow S^{\prime} \in \mathbb{C} \\
& \underbrace{f(\theta)=\exp \left(2 \pi i \sum_{j=1}^{n} r_{j} \theta_{j}\right)} \\
& \text { trig. polynomial } \\
& \rightarrow \quad f \not \equiv \text { cost } \\
& \text { trig. polynomial } \Rightarrow C^{0} \\
& \rightarrow f \text { is invariant: } f(\theta+\alpha)=f(\theta) \text { : } \\
& f(\theta+\alpha)=\exp \left(2 \pi i \sum_{j=1}^{n} r_{j}\left(\theta_{j}+\alpha_{j}\right)\right. \\
& =\exp \left(2 \pi i \sum r_{j} \theta_{j}\right) \exp \left(2 \pi i \sum r_{j} \alpha_{j}\right) \\
& \begin{array}{l}
=f(\theta) \underbrace{\exp \left(-2 \pi i r_{0}\right)}_{1} \\
=f(\theta) \cdot{ }_{1}^{\operatorname{ex}}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow f(0)=1, \quad f \text { is } c^{0} \& f \not \equiv 1 \\
& \Rightarrow \cdot \underbrace{\cdot x=\{\theta \mid f(\theta)=1\}}_{>\theta(0)=\{k \alpha\}} \text { propin invorint } \\
& \text { cloed subsect }
\end{aligned}
$$

- $\pi^{n}, x \neq \varnothing$, open
$\Rightarrow \theta(0)$ is not cleuse φ is not tor tronsikice \Leftrightarrow not minival

Pf $\underbrace{\text { top traws }} \Rightarrow \exists k: \varphi^{k}(v) \sigma v \neq \varnothing$ I a deuse orbit : $\left\{\varphi^{j}(x)\right\}$ dense

$$
\begin{aligned}
& \Rightarrow \varphi^{\varphi_{0}(x) \in V \quad \& \quad \varphi^{d_{1}}(x) \in V} \\
& \varphi^{j_{1}-j_{0}} \underbrace{\varphi_{0}(x)}_{\in V} \in V \\
& \Rightarrow \varphi^{k}(v) \cap V, k=j_{i} \dot{j}_{0}
\end{aligned}
$$

2) lik independent \Rightarrow minimal

Lemma M compect, seporable mithe spoce $\varphi: M \rightarrow M$ is top tronsitive
$\Leftrightarrow V U \& V \subset M$ open $\exists \mathrm{k}$ s.t

$$
\varphi^{k}(ひ) \wedge V \neq \varnothing
$$

Pf: Ex [K+1]
cnot entively obvies
Con for \Leftrightarrow
φ is top transitive
$\Leftrightarrow \forall V, V$ open invariont

$$
u_{n}^{\prime} v \neq \varnothing
$$

\Rightarrow every c° invariant function
1 is coust
could hove used in y, cleor anyway
To the pf: by coutradiction

- v, V oper inveviant
- Ássume vnv=ø

$$
\begin{aligned}
& f=x_{V}: \quad f(x)= \begin{cases}1 & x \in V \\
0 & x \notin V O V \\
\Rightarrow & f \in L^{2}\left(\mathbb{T}^{k}\right), \text { invoriant }\end{cases} \\
& \Rightarrow f \neq \text { oust }\left.\in f\right|_{r} \equiv 0 \\
& \\
& f \neq 1 \text { a.e. }
\end{aligned}
$$

$$
\Leftrightarrow \pm, \alpha_{1}, \ldots \alpha_{n} \text { lin deperdent over } \mathbb{Q}
$$

$$
\begin{aligned}
& f(\theta)=\sum_{k} f_{k} \cdot \exp \left(2 \pi i \sum_{j} k_{j} \theta_{i}\right)\langle k, \theta\rangle \\
& f(\theta+\alpha)=f(\theta) \quad \underbrace{\text { Fourien }}_{\varepsilon \mathbb{Z}^{n}} \\
& f(\theta+\alpha)=\sum_{k} f_{k} \underbrace{\exp \left(2 \pi i \sum k_{j}\left(\theta_{j}+\alpha_{j}\right)\right)} \\
& \exp \left(2 \pi i \sum k_{j} \theta_{j}\right) \exp \left(2 \pi i \sum k_{j} \alpha_{j}\right) \\
& =\underbrace{\sum_{f(\theta+\alpha)}^{f_{k} \underbrace{}_{k} \exp \left(2 \pi i \sum k_{j} \alpha_{j}\right)} \exp \left(2 \pi i \sum k_{j} \theta_{j}\right)}_{\text {fourier } \omega c A t} \\
& \Rightarrow f_{k}=f_{k} \exp \left(2 \pi i \sum k_{j} \alpha_{j}\right) \\
& k \pi \text { at } \operatorname{least}_{k \neq 0}^{k \neq 0} \geqslant 0<f \equiv \text { const } \\
& \Rightarrow \exp \left(2 \pi i \sum k_{j} \alpha_{j}\right)=1 \\
& \Rightarrow \sum k_{j} \alpha_{j} \in \mathbb{Z}
\end{aligned}
$$

- Lineer flows on π^{k}

$$
\begin{aligned}
& \varphi^{t}: \pi^{k} \rightarrow \pi^{k} \\
& \varphi^{t}(\theta)=\theta+t \alpha
\end{aligned}
$$

$$
\theta=\left(\theta_{1}, \ldots, \theta_{n}\right)
$$

$$
\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)
$$

very similor to trouslations

Prop - all rotios $\alpha_{i} / \alpha_{j} \in \mathbb{Q}$ \Leftrightarrow all oubils are closed

- $\alpha_{1}, \ldots, \alpha_{n}$ lin ind over \mathbb{Q}
\Leftrightarrow all orbis are deuse (minimal)
ove oubit is deuse (top. transifive)
no 1 bere: itos easier for the orbits of φ^{t} to be clense than fon $\varphi=\varphi^{1}$

$$
P f-E x
$$

- Digressiok to number theony:

Kronecker trim
1D case

$$
\begin{aligned}
& \alpha \& \mathbb{Q} \quad \forall \lambda \in \mathbb{R} \quad \forall \varepsilon>0 \\
& \exists k, m \in \mathbb{Z} s+. \\
& |k \alpha+m-\lambda|<\varepsilon
\end{aligned}
$$

This is $\Leftrightarrow\{k \alpha\}$ clense in $S^{\prime}=\mathbb{R} / \mathbb{Z}$
n D case

$$
\begin{aligned}
& \frac{\text { Thm (Kronecker) }}{1, \alpha_{i}, \ldots, \alpha_{n} \operatorname{lin}} \text { ind over } \mathbb{Q} \\
\Leftrightarrow & \forall\left(\lambda_{i}, \ldots, \lambda_{n}\right)=\lambda \in \mathbb{R}^{n} \quad \forall \varepsilon>0 \\
& \exists m=\left(m_{1}, \ldots m_{n}\right) \text { avd } \quad k \in \mathbb{Z} \text { s.t } \\
& \underbrace{\| k \alpha_{i}+m-\lambda u<\varepsilon} \\
& \mid k \alpha_{i}+m_{i}-\lambda_{i} \|<\varepsilon
\end{aligned}
$$

Pf $\Leftrightarrow\{k \alpha\}$ cleuse in $\mathbb{T}^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$
Rmk Rich conneetions DS \leftrightarrow number Theory

Rok Translations on compact Lie gps, π^{n}, ave isometries.

These examples exhaust all the dynamics complexity isometries can hove.
Essentially nothing more conplicebed con hopper

Exs Geodesic flows
skipping details fon now

- Q a Riemounion monifold, closed
- $M=S T Q=$ unit tagent bundle
$\varphi^{t}: M \rightarrow M$ the geodesoc flow
 with

$$
X(0)=q, \quad \dot{\gamma}(0)=v
$$

$$
\varphi^{t}(q, v)=(\dot{\gamma}(t), \dot{\gamma}(t))
$$

Extremely inpporhont.
Ex. $\quad \pi^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ as a Riemgujpion
aflot torus

$$
S T \pi^{2}=S_{S}^{1} \times \pi^{2}
$$

$$
v=\alpha \quad\left(x_{1}, x_{2}\right)=q \rightarrow \quad v=\left(\cos \alpha_{2} \sin \alpha\right)
$$

$$
y^{t}(x, \alpha)=\left(x_{1}+t \cos \alpha, x_{2}+t \sin \alpha, \alpha\right)
$$

porallel tronsport on \mathbb{R}^{2} in the divection of 5

Deperdiy on α
the oubits con be all closed on all deuse in $\alpha=\operatorname{cous} t=\alpha \times \overline{4}^{2}$

Ruk \exists other flat wetries on π^{2} :

$$
\begin{array}{cc}
\pi^{2}=\mathbb{R}^{2} / \Gamma, & \Gamma=X \cdot \mathbb{Z}+Y \cdot \mathbb{Z} \\
& X, Y \in \mathbb{R}^{2}
\end{array}
$$

pra sowe if them ove isometriz and some are not

But theriz geodesir flows ave vevy similar
Move interesting excuples:
suztaces of const neg. curvetur
Loter?

Ex6 Geodesir flows:
sur leces of neg curvotrive

$$
01 / 11-2022
$$

Hyperbolic plane

- $H \left\lvert\,=\left\{\begin{array}{l}z \in \mathbb{C} \mid \operatorname{Im} z>0\} \text { upper holf ploue } \\ n\end{array}\right.\right.$ $x+i y$
Riemannian metric of coust curv $=-1 \leftarrow$ hyperbolic metric

$$
\frac{d x^{2}+d y^{2}}{y^{2}}
$$

- Ceodesirs: circles with centess on the x-axis including vertiol lives:

Return to this
 a bit later

Ex Altar knowing thit $\operatorname{PSL}(2,1 R)$ ave 1 isometrios:

- ebeck Heat a vertical live is a qeodes*
- check that fors ony circle \exists gasendis a vertice bive
- Isometries:

$$
\begin{aligned}
& \operatorname{SL}(2, \mathbb{R}) \rightarrow \underbrace{\operatorname{PSL}(2, \mathbb{R})} \longrightarrow I_{\text {SO }}(H+1) \\
& \begin{array}{c}
\text { Orientibian presesvis } \\
\text { isometides }
\end{array} \\
& \text { isometries } \\
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \stackrel{{ }_{2 \rightarrow 1^{\prime}}}{\stackrel{2 \mapsto}{ }} \underbrace{\frac{a z+b}{c z+d}} \\
& \text { ad-bc=1 fracliowl-lineer } \\
& <\text { not hard trouspormation }
\end{aligned}
$$

Exacheck that this is on action by isometries
\int - Check that $\operatorname{PSL}(2, \mathbb{R}) \longrightarrow I_{\text {so }}(H 1)$ is on isomoophis: every isometo los thi foum
Hint $-g \in I=1(H 1)$ is coupletely dutermina

$v=1$ - For any $(p, w) \in S T H \mid$

$$
\exists!g \text { sot. } g(q, v)=(p, w)
$$

- PSL $(2,1 R) \longrightarrow S T i+1$

$$
g \stackrel{\longmapsto}{\longmapsto} g(q, v)
$$

is an differ

- Compoct surfoces with hy perbolic metrics
Fact (not obvious)

$$
\begin{aligned}
& \left.\sum_{q \geqslant 2} \quad \exists \operatorname{rapsL}_{\operatorname{c}}(2, \mathbb{R}) \quad \operatorname{Cor} \operatorname{SL}(2, \mathbb{R})\right) \\
& \text { P a discrete subgroup } \\
& \rightarrow \exists \text { a ribdU \& I s.t. Uñ } \Gamma=\{I\} \\
& \text {-i.g. } \dot{g}_{2} \text { s.t. } \Sigma_{g} \underset{\text { ditfeo }}{\cong} H / T \\
& \text { I }
\end{aligned}
$$

Con Eg admits a metrric of coustont curvetuve - 1 (a hygnev bolie metric)
Con. $H 1 \cong \mathbb{R}^{2}$ is the universal covering diftes of Σg

$$
\cdot \Rightarrow \pi_{n \geq 2}\left(\Sigma_{g}\right)=0
$$

Con $S T \Sigma_{g} \cong \underbrace{\Gamma \backslash S L(2, \mathbb{R})}$
an algebraic unodel for ST \sum_{g}

Rmik Γ is not unique: diflevent metrics on $\sum_{g 22}$ with $\operatorname{con} 2 v=-1$.

- Algebvair construction:
- $\Gamma \subset S L(2, \mathbb{R})$ a discrete subgroup set. $M=P \backslash S L(2, I R)$ is couppoct and smooth
- glt) $\quad: \quad \mathbb{R} \rightarrow S L(2, \mathbb{R})$ a one promoter subgroup
\Rightarrow a flow on M

$$
\varphi^{t}(x)=x \cdot g(t)
$$

Ex. Toking P as before we get a flow on ST $\Sigma_{g \geqslant 2}$
Specific examples

$$
\text { - } g(t)=\binom{\cos t, \sin t}{-\sin t, \cos t} \in \operatorname{sO}(2) \subset S L(2, \mathbb{R})
$$

\Rightarrow all obits ave periodic

- $g(t)=\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)$ or $\left(\begin{array}{ll}1 & 0 \\ t & 1\end{array}\right) \underline{\text { Howocycle }}$ flow parabolic the projection of any orbit to \sum_{g} (or H1) is a geodesic circle of curvoby $k=1$
Ex: what ave these?

H
egg. Morizatol lines

Ex: Prove the the hovocycly flow in STE los no closed orbits (Need to show feet no orbit con close up as $H\left(\longrightarrow \sum_{g}\right.$

- $g(t)=\left(\begin{array}{ll}e^{t} & 0 \\ 0 & e^{-t}\end{array}\right) \in S L(2, \mathbb{R})$ the geodesic flow:
hyperbolic subgroup
some orbits ave closed (closed geodesics) bit some ave dense?
Two non-obvious facts:
- - Che union of periodic obits is dense
- \exists dense orbits: top tronsitive

Rok Generalizes to groups other thou $S C(2, \mathbb{R})$: important ∇
Further reading
-[CFS]: §4.4

-

Ex 7 - Shift tronsformotious
"Symbolic Dynamics"

- Preliminaries - pt set topology
- $A=$ compact metric space
. $A^{\mathbb{Z}}=\quad \ldots \times+A^{-\prime} \times A^{\circ} \times A^{\prime} \ldots$
Elements: (bi) infinite sequences $x=\left\{x_{i} \in A \mid \varepsilon \in \mathbb{Z}\right\}$
- With product topology:
open sets $\ldots U_{-1} \times V_{0} \times v_{1} \times \ldots=\Pi U_{i}$ where all but a finite number $V_{i}=A$
Fact $A^{\mathbb{Z}}$ is compact
- Metric

$$
d(x, y)=\sum_{i \in \mathbb{Z}} \frac{\left.\int^{2^{i i}}\right)}{\operatorname{con}^{\prime} c} d\left(x_{i}, y_{i}\right)
$$

Rok

$$
\begin{aligned}
\operatorname{dim} A^{\mathbb{Z}} & =\left(1+2 \sum_{i=1}^{\infty} \frac{1}{2^{i}}\right) \text { diam } A \\
& =1+\frac{1}{2} \frac{2}{1-\frac{1}{2}} \\
& =3 \operatorname{diam} A
\end{aligned}
$$

observotion:

$$
\begin{aligned}
& x_{i}=y_{i} \text { fan } \operatorname{li} 1 \leq N \\
& \Rightarrow \quad d(x, y) \leq \underbrace{2 \sum_{i=N+1}^{\infty} \frac{1}{2^{i}} \cdot \operatorname{diamA}} \\
& 2 \cdot \frac{1}{2^{N+1}} \frac{1}{1-\frac{1}{2}} \cdot \operatorname{diamA} \\
& \Rightarrow \quad d(x, y) \leq \frac{\operatorname{diamA}}{2^{N-1}}
\end{aligned}
$$

$\Rightarrow d(x, y)$ is small

- Shift Transformotion
set.

$$
\begin{array}{rlr}
A & =\{0,1\} & d(0,1)=1 \\
M & =A & \\
& =\text { sequences of } 0 \& 1 \cdot \mathrm{~s}
\end{array}
$$

- $\varphi: M \rightarrow M$ shift to the left

$$
\varphi(x)_{i}=x_{i w} \text {, a homeo }
$$

$$
\because x_{<} x_{-1} x_{0} x_{1} x_{2} \ldots
$$

Rnk: variouts

- Replace $A=\{0,1\}$ by the alphobet $A=\{1, \ldots, n\}$. Similan properties
- Peplar A^{Z} by

$$
M=A^{\mathbb{N}}=A \times A \times \ldots
$$

= one sided, intinite seg
$\varphi: M \rightarrow M$, left shift

$$
\varphi\left(x_{0} x_{1} x_{2} \ldots\right)=x_{1} x_{2} x_{3} \ldots
$$

c^{0}, but not inveztible
Interperetotion:
$A=$ collechor of stotes
$x \in A^{\mathbb{Z}}$ a proces

$$
\begin{aligned}
& x_{0}=\text { stete at } t=0 \\
& x_{1}=\square \cdot . \quad t=1
\end{aligned}
$$

Properties

- ψ is very for from an isometry: φ is expansive

$$
\begin{aligned}
& \exists \varepsilon>0 \text { sit } \forall x \neq y \exists k \text { with } \\
& d\left(\varphi^{k}(x), \varphi^{k}(y)\right)>\varepsilon
\end{aligned}
$$

Pf $\quad \varepsilon=1, \quad x \neq y \Rightarrow \quad \exists i: x_{i} \neq y_{i}$

$$
\begin{gathered}
k=-i \\
\varphi^{k}(x)_{0}=x_{i} \\
\varphi^{k}(y)_{0}=y_{i} \\
d\left(\varphi^{k}(x), y^{k}(y)\right) \geqslant d\left(\varphi^{k}(x)_{0}, \varphi^{k}(y)_{0}\right)=1 \\
-1 \sum_{0} x_{1} \cdots x_{1} \\
\cdots y_{0} y_{i} \cdots y_{i} \cdots
\end{gathered}
$$

cahibate contribute with
with weight 1

- Petiodir pto = periodie sequeuces

$$
\Rightarrow p(k)=1 k_{-} \text {periodic pts } \mid
$$

$$
=2^{k}
$$

- Periodor pts are deuse

Pf Given x and $\varepsilon>0$ tobe N sotut

$$
y=\hat{x} \hat{x}^{-N} \hat{x}_{\ldots+1}^{-N+1}
$$

$$
\Rightarrow \quad y_{i}=x_{i} \quad|i| \leqslant N
$$

$$
\Rightarrow d(x, y) \leq \frac{\operatorname{dian} A}{2^{N-1}}=1<\varepsilon
$$

- φ ir top. transitive: \exists a dense orbit.

Pf: $M=A^{\mathbb{Z}}$ is separable:
\exists a countable deus set
(e.g. con tel periodic pis)

Denote these set by

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left.x^{0}, x^{1}, x^{2}, \ldots\right\} \\
k^{2} \quad \begin{array}{l}
\text { each of these is } \\
\text { a bi-infer } \\
\text { sigrience }
\end{array} \\
\forall y \in M \quad x^{i s} \text { st. } \\
d\left(y, x^{i s}\right) \rightarrow 0, i_{s} \rightarrow \infty
\end{array}\right.
\end{aligned}
$$

- Let \hat{x}^{i} be the finite sequela

$$
x_{-i} \ldots x_{0} \ldots x_{i}
$$

and

$$
z=\ldots 0 \ldots 0 \hat{x}^{0} \hat{x}^{1} \hat{x}^{2} \hat{x}^{3} \ldots
$$

claim $\left\{\varphi^{k}(z)\right\}$ is dense
Pf
Given $y \& \varepsilon>0$
Pick $i=i_{s}$ so large twat

- $d\left(y, x^{i}\right)<\frac{\varepsilon}{2}$
- $\frac{1}{2^{i-1}}<\frac{\varepsilon}{2}$
- pich k so thut \hat{x}^{i} is eeuteved at 0 in $\varphi^{k}(z)$

$$
\begin{gathered}
z=\frac{\ldots 0 \ldots 0 \hat{x}^{0} \hat{x}^{1} \hat{x}^{2} \hat{x}^{3} \ldots \hat{x}^{i}}{\varphi^{k}} \\
\Rightarrow d\left(x^{i}, \varphi^{k}(z)\right) \leqslant \frac{1}{2^{i-1}}<\varepsilon / 2 \\
\\
\Rightarrow d\left(y, \varphi^{k}(z)\right) \leqslant \underbrace{d\left(y, x^{i}\right)}_{\hat{\varepsilon} / 2}+\underbrace{d\left(x_{1}^{i}, \varphi^{k}(z)\right)}_{\hat{\varepsilon} / 2}<\varepsilon
\end{gathered}
$$

Ex. Show thut $M=A^{2}$ is homeo to the Contor set

Rmil $\exists C^{\infty} \varphi$: suzfoce P on
φ : disk Q or monitauld \bigcirc
s.t. $\exists K \leftarrow$ invoviout subset

$$
\text { with }\left.u\right|_{k} \cong\left(A^{\mathbb{z}}\right. \text {, shitt) }
$$

These are "horses hoes" very coumon \& importont

Furthor Reoding:

$$
[K M] \delta 1.9
$$

We will keep raturniy to shifts...
§2 Elements of Ergodic Theory

- Letus sow (M, μ) be a mesone $\frac{\text { Lectux } 4 / 13-2022}{5 p a x}$: Usually assume:
- μ is a prabobility measuce: $\mu(m)=1$
- If in is a metric spoce, then μ is a Borel measuse: μ is definiod on all open sets $(\Rightarrow$ on all Bord sob)
Ex: smosth meesnze
- M^{n} closed orientable monifold
- $\omega \in \Omega^{k}(M), \quad \omega>0$
- $\mu(\tau)=\int_{v} w^{\prime}$

Ex "meesures supposted on timite seb"

$$
\begin{aligned}
x \subset M & \text { finite } x=\left\{x_{i}\right\} \\
\mu(v) & \left.\left.=\frac{1}{|x|} \right\rvert\, x \cap v\right) \\
& =\frac{1}{|x|} \sum \delta_{x_{i}}
\end{aligned}
$$

Ex. linean combinetion:

$$
\mu_{0} \& \mu_{1} \text { as above } \Rightarrow \text { so is } \lambda \mu_{1}+(1-\lambda) \mu_{0}
$$

$$
\forall \quad 0 \leq x \leq 1
$$

Rm2 :
closent

$$
\begin{aligned}
\operatorname{supp} \mu & =\{x / V v=\operatorname{nbd} \text { of } x, \mu(v)>0\} \\
& \operatorname{supp}\left(\lambda \mu_{1}+(l-\lambda) \mu_{0}\right)=\operatorname{supp} \mu_{0} u \operatorname{supp} \mu_{1}
\end{aligned}
$$

- $\varphi: M \rightarrow M$ is measse preseaving and C^{0} or homeo whar M is also a metric space

Ex. $\varphi: M \rightarrow M$
$X=\left\{x_{8}, \ldots, x_{n-1}\right\}$ a perivdic orbit
\Rightarrow an invariout meosue

$$
\mu(v)=\frac{1}{n}|X n v|=\frac{1}{n} \sum_{i=0}^{n-1} \delta_{x_{i}}
$$

$$
\begin{aligned}
x_{n-1} & =\varphi^{n-1}\left(x_{0}\right) \\
M(\%) & =\frac{\#\left\{x_{i} \text { in } v\right\}}{n} \\
& =\text { frequeny of euterivy } v
\end{aligned}
$$

Revisiting our main exougles from the measure then perspective

Ex: Eradiewt flows:
Ex. For any invoriout Ronal soersue $\operatorname{supp} \mu \subset \operatorname{Crit}(f)=\operatorname{Fix}(\varphi)$
In particular whom $\operatorname{Crit}(f)$ ave ibololed, the only inv measures come from fixed pos

Ex. Rotetions of $\&^{\prime \prime}$ or trawslitions of π^{n}

- The stondord measule d θ ou $d \theta_{1} \wedge \ldots 1 d \theta_{n}$ is obvionsly invoriont
Rombs An isometry of a Riemaknion monitold olways presizves the Rieneaunion vol
- Dependiry on α, there conld be otlor invoriant meosures e.g. $\alpha \in \mathbb{Q}$ than $\theta \mapsto \theta+\alpha$ hes pertadir orbits, ete
weill look into these mops some uare bler
- $\alpha=\frac{p}{q}, \varphi^{q}=i d$

$$
\begin{aligned}
& \bar{q} \Rightarrow \mathbb{Z}_{k}=\mathbb{Z} / k \mathbb{Z} \text {-action on } \$^{\prime} \\
& s^{\prime} \longrightarrow \delta^{\prime} / \mathbb{Z}_{k} \leftarrow \text { circle }
\end{aligned}
$$

every unvaviant meason has of form $=\pi^{*}\left(\right.$ a measure or, $\left.s^{\prime} / \mathbb{Z}_{x}\right)$

Ex. Geodesic flows have a notuval invoriout measure Three ways to see:

1) Q^{h} R. monifold

$$
\begin{aligned}
T Q & \cong \cong T^{*} \mathbb{Q} \longleftarrow \text { syuplect } \\
v & \longleftrightarrow\langle v, \cdot\rangle
\end{aligned}
$$

$\Rightarrow T Q$ also gets a squpl. sth w Geodesir flow is the tham flow of $H(v)=\frac{1}{2}\langle v, v\rangle$
$M=S T Q=\{H=1 / 2\} \longleftarrow$ regubr lovel
Ex $\exists V G \Omega^{2 n-1}(T Q)$ st.

- $v_{1} d H=\omega^{n}$ neor $\{t l=1 / 2\}$
- $\left.V\right|_{M}$ is unique \& $\left.\nu\right|_{M} ^{\neq 0}$

Could use the nototion:

$$
\begin{gathered}
\nu=\frac{w^{k}}{d H} \quad \begin{array}{l}
\text { Irvericut by } \\
\text { constructios? } \\
\text { (emevgy w ionservotion) }
\end{array}
\end{gathered}
$$

A variant $]: \& \begin{aligned} & \text { a vol form } \\ & \& 2 l=c\}\end{aligned} \Rightarrow$ a vol form
\& Example S : \& $\{H=C\}$ on $H=C$

- $\mathbb{R}^{3} \quad d x_{n} d y a d z=\eta$
- $H(x, y, z)=x^{2}+y^{2}+z^{2}$
$S^{2}=\{H=1\}$ regular level
- $\exists v$ sit.

$$
\begin{aligned}
& \quad J_{\wedge d H}=\eta \text { nev } \varsigma^{2} \\
& \begin{aligned}
J= & \frac{x d y \wedge d z-y d x \wedge d z+z d x \wedge d y}{G\left(x^{2}+y^{2}+z^{2}\right)} \\
d H= & 2(x d x+y d y+z d z) \\
V_{\wedge d H}= & \frac{1}{6\left(x^{2}+y^{2}+\tau^{2}\right)}\left(2 x^{2} d x \wedge d y \wedge d z\right. \\
& \left.+2 y^{2} d x \wedge d y \wedge d z+2 z^{2} d x \wedge d y_{1} d z\right) \\
= & d x \wedge d y \wedge d z=Y
\end{aligned}
\end{aligned}
$$

- $\left.V\right|_{\delta^{2}}$ is unique and

$$
=\frac{1}{6}(x d y \wedge d z-\ldots)=\frac{1}{6} \text { area for }
$$

2) STQ has a notraval measine

Invariaue not-abvicus
3) For $S T \Sigma_{g}=\operatorname{PlSL}(2, \mathbb{R})$, i.e.
$Q=\sum_{g}$ with a hyperbolic unatric

$$
\begin{aligned}
& S L(2, \mathbb{R})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a d-b c=1\right\} \\
& \nu=\frac{d a \wedge d b \wedge d c}{|d|}
\end{aligned}
$$

bi-invariant tlaan meosure
\Rightarrow clesceuds to on invoricat meogne on $\pi \backslash S L(2,1 R)$

Rmls : v is pressiwed by all L- povavelor subgroup of $S L(3 \mathbb{R})$

- Other unvaviant neasures (e.9. from periodir orbits)

Ex. Shift transformetions
$\mu_{A}=a$ measure on A
\Rightarrow - a Bovel measue on $A^{Z}=M$

$$
v=\quad \ldots \times v_{-1} \times v_{0} \times v_{1} \times \ldots
$$

1 all but a finibe numb=n $=A$
"a cylinder"

$$
\mu(v)=\Pi \mu\left(v_{i}\right) \text {, then extend }
$$

- μ is shift-invasiart

Sub-Ex $\quad A=\{1, \ldots, n\}$

$$
\begin{aligned}
1 \geqslant & p_{i} \geqslant 0 \text { s.t. } \sum p_{i}=1 \\
& \text { prohobility of } i \\
& \mu\left(\text { lij) }=p_{i}\right.
\end{aligned}
$$

E.9. $p_{i}=1 / n$

Rmk:-Thus we leve wany indaviout

- B othen invociant measures: eg. periodir orbits
- Poincoré Recurrence Thm

Simple ond verg imporfant
Thm (PR) \& difterent vertions - $\varphi: M 』, ~ \mu=$ invariont Bovel mesule
(ix) - VcM, measu)ble (l.g. open), $\mu(v)>0$
\Rightarrow far $a . a . x \in U$ the oubit $\left\{\varphi^{k}(x) \mid k \in \mathbb{N}\right\}$ visits v again (cen set visit time $k \geqslant$ any n)
Con Assume μ is sach that μ (open) >0 $\varphi: M \supseteq \mu$-presezvin
\Rightarrow a.a. pb ave veustrent:
$\varphi^{\prime}(x)$ comes bock and cluse bo x

Interprettion: $v=$ iveut, $\mu(v)=$ probabilits (no mattor how small)
$x, \varphi(x), \varphi^{2}(x), \ldots$ a proces
\Rightarrow eveng possible evert w:ll eventually kodpou again of it hoppers once

cylinder with a gas

- Initial condition: gas is one half of the cylinder
- this is a positive (but close to 0) probability event
- \exists time $T>0$ such that the gas on its own will again concentrate in one half of the cylinder
- Why doit we observe this?

The reason is the T is huge? Longer than tho existence of the universe!

Pf: Poincare' Recurrence $\frac{\text { Lecture } 5}{01 / 18-2022}$
observation: $\mu\left(x_{n} \varphi^{k}(x)\right)=0 \quad \forall k$

$$
\Rightarrow \mu(x)=0
$$

Pf: $\mu\left(x_{n} y^{k}(x)\right)=0 \Leftrightarrow \mu\left(y^{i}(x) y^{j}(x)\right)=0$

$$
\mu\left(\varphi^{i}(x) \cap \varphi^{j}(x)\right)=\mu\left(x_{n} \varphi^{\text {A } p o l y}(x)\right)=0
$$

$$
\begin{aligned}
& 0 \\
& y^{2}(x) \\
& \psi^{2}(x) \\
& \text { all } . . \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \mu\left(\frac{11}{k=0} \varphi^{k}(x)\right)=\sum \mu\left(\varphi^{k}(x)\right)=\infty \cdot \mu(x) \leqslant 1 \\
& \Rightarrow \mu(x)=0
\end{aligned}
$$

Given VCM, need to show a.a. $x \in U$ come bock to v :

$$
x=\left\{x \in v \mid \varphi^{k}(x) \& U \quad \forall k=1,2, \ldots\right\}
$$

Claim $\quad x \cap \varphi^{k}(x)=\varnothing$
Indeed: $\quad \varphi^{k}(x) \cap v=\varnothing$
obsewotion $\Rightarrow \mu(x)=0$.

- Birkhoft Ergodic Theorem

Setting: as before

- $\varphi: M \longrightarrow M, \mu \varphi$-inueviont, prob $\int \mid f i d \mu<\infty$
- $f \in L^{\prime}(M)$ might or not exist

$$
\text { - } \bar{f}(x)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} f\left(\varphi^{i}(x)\right)<\text { time average }
$$

\rightarrow Averaging f along the orbit of x

$$
i^{\circ} \cdot \gamma^{0} \varphi(x) y^{2}(x)
$$

Ex. x is periodic with min period k :

$$
\begin{aligned}
x & =\varphi^{k}(x) \\
\Rightarrow \quad \bar{f}(x) & =\frac{1}{k}\left(f(x)+f(\varphi(x))+\ldots+f\left(y^{k}(x)\right)\right)
\end{aligned}
$$

Thy (Birkhoff Ergodic Tim)

$$
\left\{\begin{array}{l}
(\sqrt[f]{f}(x) \text { exists for a.a. } x \\
(\bar{f} \text { is } \varphi \text {-invariant: } \bar{f} \cdot \varphi=\bar{f} \\
\text { : } \bar{f} \text { is } L^{\prime} \& \quad \int \bar{f} d y=\int f d \mu
\end{array}\right.
$$

Nontrivial; see egg.

$$
\begin{aligned}
& {[k+i] \$ 4.1(e)} \\
& {[F k S] \$ 1.2}
\end{aligned}
$$

Ronk: Two serspectives:
2. μ is natund and Lixedi y veries within the class of fu-preserving mops, on a smaller class.
Ex. Homittorion systemy: a symplectre form preserved by
$\Rightarrow \omega^{h}$ a nataral inv measuie, ete
2. φ is given and we are intensted in all invariant messuzas...

Pf of inplicetions:

- inveriance: $\bar{f}(\varphi(x))=\bar{f}(x)$ for $a \cdot a \cdot x$

$$
f(x)=\lim _{n \rightarrow \infty} \frac{1}{n}\left(f(x)+\ldots+f\left(\varphi^{n-1}(x)\right)\right.
$$

both \exists for a.a. x

$$
\begin{aligned}
& \bar{f}(\varphi(x))=\lim _{h \rightarrow \infty} \frac{1}{h}\left(f(\varphi(x))+\ldots+f\left(\varphi^{n}(x)\right)\right. \\
& \bar{f}(\varphi(x))-f(x)=\lim _{h \rightarrow \infty} \frac{1}{h}\left(f\left(\varphi^{h}(x)\right)-f(x)\right) \\
& f_{\in L}=0 \quad \text { for a.a. } x
\end{aligned}
$$

- intequal:

$$
\begin{aligned}
\int \bar{f} d \mu & =\int \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} f\left(\varphi^{i}(x)\right) d \mu(x) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} f_{0} \varphi^{i} d \mu \text { all equal } \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \cdot n \cdot \int f d \mu \\
& =\int f d \mu
\end{aligned}
$$

Variauts

- $\bar{f}(x)=\lim _{n \rightarrow \infty} \frac{1}{2 n+1} \sum_{i=-n}^{n} f\left(\varphi^{i}(x)\right)$
a.e. equal to tho previon ove

$$
\begin{aligned}
& \text { For flows: } \\
& \begin{aligned}
\bar{f}^{\prime}(x) & =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} f\left(\varphi^{t}(x)\right) d t \\
& \text { a.e. } \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} f\left(\varphi^{t}(x)\right) d t
\end{aligned}
\end{aligned}
$$

Similar stotement: \bar{f} exists a.e. and

$$
\int \bar{f} d p=\int f d \mu
$$

Ex-Interpretotion
$U \subset M, \quad f=X_{v}$ charoctaishic furction
$\Rightarrow \bar{f}=$ average time $\varphi^{i}(x)$ or $\varphi^{t}(x)$ spends in V

$$
\begin{aligned}
& \bar{\varphi}(x)=\lim \frac{1}{n}\left(f(x)+f(\varphi(x))+\ldots+f\left(\varphi^{i}(x)\right)+\ldots\right)
\end{aligned}
$$

- Ergodicity and unique ergodicity

Def φ on μ is evgodre it for every measurable inv set A either $\mu(A)=1=\mu(M)$
or $\quad \mu(A)=0$
Rime: no "proper" inv. subsets \longleftarrow measure theovelie

Prop: (φ, μ) is ergodic

$$
\begin{aligned}
& \Leftrightarrow \quad \forall f \in L^{\prime} \quad \bar{f}=\text { const }=\int f d \mu: \\
& \bar{f}^{\prime}(x)=\underbrace{\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} f\left(\varphi^{i}(x)\right)}_{n \rightarrow \infty}=\underbrace{22 \int_{\text {space a verage }}^{\int_{M} d \mu} \text { for a.a. } x}_{\text {time average }}
\end{aligned}
$$

\Leftrightarrow The only inv L'- functions are constant functions

Equivolhit, clearly.
$\Leftrightarrow \forall a . a \cdot x$ the average time $\varphi^{k}(z)$ spuds in $v=\mu(v)^{2}$ observed probalits

Pf. φ is evgodic: every invoriant x_{v} is (a.e.) constent or eveng inv \forall is a.e. M or \varnothing.

$$
\leftarrow\left\{\begin{array}{l}
\text { look at } t \geq \text { const } \\
\text { usetw foA that } x_{v} \text { 's ave } L^{\prime} \text {-dase }
\end{array}\right.
$$

- every $f \in L^{\prime}$ is conotont (a.e.)
$E x_{.} \cdot x, y(x), \ldots, x=\varphi^{h}(x)$ a periodte oubit
- Ju The averiobed wesne

$$
\begin{gathered}
\mu=\frac{1}{n} \sum_{i=0}^{n-1} \delta_{\varphi^{i}(x)} \\
\left.\Leftrightarrow \quad \mu(v)=\frac{1}{n} \right\rvert\, \varphi^{i}(x)^{\prime} s \text { in }-v \mid \\
\varphi^{n}(x)=i^{x}
\end{gathered}
$$

$\Rightarrow \mu$ is ergodic

- Def φ is uniquely (on strongly) evgodic if \exists exactly one invariart. mesme μ for which φ is evgodr.

Bma φ is ergodie w. 'th zespeit to μ, look of a 41 inv. measuses, noue them is ersodie... More la Ler when we stady the spece of irv. merrues?
Examples - wait!
But an impoztont pti
Y uniguely engodic for $\mu<\frac{\text { "continuous" }}{\text { openseb: } \gg}$
\Rightarrow no periodir orbits (1.9. İxpl pb): >0 \uparrow every yer orbit qives r.be to on erpodic measue

7hm M is compact, $\mu(M)=1, \varphi \in C^{0}, \mu$ is inveria.t
1). 4 ergodic $\Rightarrow \exists$ on orbit dease in $\operatorname{supp} \varphi$
2)- u uniguely ensodre
\Rightarrow every oubity is clewe is $\operatorname{supp} \varphi$
Con Acsume thet μ (open) $>0 \quad \forall$ open:

$$
(\Rightarrow \operatorname{supp} \varphi=M)
$$

- Y ersodic $\Rightarrow \exists$ a deve ocbit: top transitive
- u uniquely ergodic
\Rightarrow all oubith are dose: minimal
Rmki Similar fon flows
Rmb-Countenexapple to Cor

Ju uniguty ergodie without deuse ozbit
The orly inv mearur is δ_{x} but no deuse oubits

The reason: $\delta_{x} \pi$ not "continuoes"
Rngh Ic i) weill show that $\theta(x)$ is devese in supp μ fon

$$
\mu-a . a \cdot x \in \sup p \mu
$$

Parallel brtween measure end topology

ergodic
uniquely evgodre
more into
becanos a los
of measines ave involved

Rae Similar for flows
Topology
inv. set

1. hor

$$
\operatorname{sinp} \mu
$$

ton transitive: \exists deco ousel

$$
\begin{aligned}
& \text { minimal: } \\
& \text { evenoonhit } \\
& \text { is odense } \\
& \text { f } \\
& \text { les info } \\
& \text { more robust }
\end{aligned}
$$

On the pf of the Thm
Fact: M compact netro spece A $\varphi: M \rightarrow M$ homeo (or just C°)
$\Rightarrow \varphi$ has an (ergudic) inv. measuze
Borul, Tprobobility
To be discussed later
Pf of Thm

1) μ ergodic $\Rightarrow \exists$ on onbit alerse in supp μ

- Can assume $M=\operatorname{supp} \mu \leftarrow$ coumact
- Let $\left\{v_{i}\right\}$ be a base of the indrices top on $\mu=\operatorname{sen} p \mu \Rightarrow \mu\left(v_{\alpha^{*}}\right)>0$
for ony axen $v \Rightarrow v_{j} \in V$
$O(x)$ is dense $\Leftrightarrow \forall j: \theta(x) \cap v_{j} \neq \varnothing$
- ergodicity \Rightarrow

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} x_{v_{j}}\left(\varphi^{i}(x)\right)=\mu\left(v_{j}\right)>0 \tag{61}
\end{equation*}
$$

for a.e. $x: \quad x \in X_{j} \quad \mu\left(X_{j}\right)=1$
$\Rightarrow \chi_{v_{i}}\left(\varphi^{i}(x)\right)>0$ for some i
$\Rightarrow \quad \varphi^{i}(x) \in U_{j}: \theta(x)$ enters v_{j}
$X=n X$. furl measune
$\forall x \in X \quad \theta(x)$ intersech $\nabla_{j} \quad \forall j$
Rmk we have froved tart
$\theta(x)$ is deuse in supp μ
for $\mu-a-a$. $\operatorname{\text {e}}$ в supp μ
2) μ uniguoly ergodic $\Rightarrow \varphi$ is minimel in supp μ
Assume $\theta(x)$ is not dewe in $M=$ suppp

$$
\overline{Q(x)} \subset M=\operatorname{supp} \varphi^{\circ} \text { cupect mechse }
$$

$$
\neq
$$

$\Rightarrow \exists$ an ergodic iuv meosme V

$$
\left\{\begin{array}{l}
\text { with } \operatorname{supp\nu } \subset \overline{\theta(x)} \subset M \\
\Rightarrow \quad \nu \neq \mu \quad \rightarrow<u_{i} i t h \text { urique } \\
\text { Foct }
\end{array}\right.
$$

Discursion:
Recurrence vs Ergodicity
PR:: a.a. pts are reuirrent: come back ar bit. \leftarrow holds uncondilionely close to themselves (μ is inv)

- Rat of S^{2} in α
- Regarallen of $\alpha, \varphi^{k}(x)$ gets arbitrarily close to x

Romp ala. is essential: potion do not come back

Ergudicity : babes not hold uncouditioully a.a. pb enter every set V with frequency $\mu(v)$

- Examples
- Gradiput flows: nothing interesting
For any μ : supp $\left.\mu \subset \operatorname{Crith}_{\text {(f }}\right)=$ Fix (φ) and μ is ensodie $\Leftrightarrow \mu=\delta_{x}, x \in \operatorname{Cit}(f)$

Rmk-Ex: a diser inv measure μ

$$
\begin{aligned}
\text { ergodic } & \mu \mu^{\mu(x)} \delta_{\theta(x)}<\text { periodic } \\
x=\varphi^{n}(x) & \mu=\frac{1}{n} \sum_{i=0}^{n-1} \delta \varphi^{2}(x) \quad \varphi^{i}(x)
\end{aligned}
$$

- Rotations of $S^{\prime}=\pi / 2$ $\varphi: \theta \mapsto \theta+\alpha \quad \alpha \in \mathbb{R} / \mathbb{Z}$

- $\alpha \in \mathbb{Q} \Rightarrow$ periodic: $\varphi^{q}=i d, \quad \alpha=\frac{p}{q}$
\Rightarrow every orbit is pesiodor

$$
\Rightarrow \text { not ergodic. }
$$

some condition.

- $\alpha \notin Q$ as minimality
minimality
Tho $\alpha \notin Q) \Rightarrow \overline{i s}$ uniquely ergodic
Pf: Focus on ergodicity (not unique) Need to chow: $\forall g \in L^{\prime}\left(s^{\prime}\right)$
* $\frac{1}{n} \sum_{k=0}^{n-1} g(\theta+k \alpha) \rightarrow \int g d \theta$

For a.a. θ : in fact for all $\theta \in S^{\prime}$
Enough to do this for $g=x_{1}$ open.

$$
\int f_{0}\left[f_{1} \quad f_{0} \leqslant g \leqslant f_{1}, 0 \leqslant f_{L}-f_{0} \leqslant \varepsilon\right.
$$

Enough to do this for $C^{\circ}\left(\delta^{\prime}\right)$
\uparrow
Lemma (Weyl)

$$
\begin{aligned}
& \forall f \in C^{0}\left(S^{\prime}\right) \\
& \frac{1}{n} \sum_{k=0}^{n-1} f(\theta+k \alpha) \xrightarrow[\text { uniforly }]{ } \int_{S^{\prime}} f d \theta
\end{aligned}
$$

Pf. Trig polynomials are C^{0}-dense in $\mathrm{C}^{\circ}\left(\$^{\ell l}\right)$
\Rightarrow Enough to prove this for trig polyuomivals Compare with $\sum_{l=n}^{m} a_{l} e^{2 \pi i l \theta}$ the pf of vinimelits of $\pi^{2}-\frac{V}{0}$
\Rightarrow Enough to prove this

$$
\left.\frac{\text { for } f=e^{\mid 2 \pi i l \theta}:}{\frac{1}{n} \sum_{k=0}^{n-1} e^{2 \pi i(\theta+k \alpha) \cdot l} \underset{\text { unit }}{ } 0} \right\rvert\, \stackrel{l \neq 0}{ }
$$

$$
\leqslant \frac{1}{n} \frac{2}{\left|1-e^{2 n i} \log \right|} \longrightarrow 0
$$

Ruk For qunique hyperbolicity Criterion: - exaetly whit we unit proved!
Assumit thet $\frac{1}{n} \sum_{k=0}^{n-1} f\left(\varphi^{k}(x)\right) \xrightarrow{\text { unit }} \int f d \mu$ for every $f \in C^{\circ}$ $\Rightarrow \varphi$ is uniqualy evgodoc

$$
\begin{aligned}
& \begin{array}{l}
L_{n}\left|\sum_{k=0}^{n-1} e^{2 \pi i l(\theta+k \alpha)}\right|
\end{array} \\
& =\frac{1}{n}|\underbrace{e^{2 \pi i l \theta}}| \cdot\left|\sum_{k=0}^{n-1} e^{2 \pi i l k \alpha}\right| \\
& =\frac{1}{n} \underbrace{\frac{1}{\mid 1-e^{2 \pi i \ln \alpha \mid}}}_{\substack{\neq 0 \forall l: \alpha \notin Q}}<\underbrace{|1 \pi i l \alpha|} \text { bounded by } 2=1+1
\end{aligned}
$$

Digrenion to number theory:
unitorm distribution
DeA A seq $x_{k} \in \mathbb{R}$ or $\mathbb{R} / \mathbb{Z}=\oint^{\prime}$
is unitaruly dishibuted $(\bmod 1)$
if (B) Ics (an interval)

Rumb x_{k} is unitovnly distributed

$$
\Leftrightarrow x_{k}+\text { const B }
$$

Pf: replace I by $I+$ conot
Q. Which sequeuces ane

A unibormly disitboted?
Inporbat In nuwber cheory: books and book...

By def:
φ : S'ゝ is evgodic

$$
\begin{aligned}
\Leftrightarrow & \forall 0.0 \text { x } x \in \ell^{\prime} \\
& \varphi^{k}(x) \text { is } \\
& \text { unitovuly dishributed }
\end{aligned}
$$

Con $\alpha \notin Q \Leftrightarrow k \alpha$ is umitauly distr. $\bmod 1$

Move involued dynomical systerms anguments (see. lig.[Wa,lkdon])
Thm (Weyl)
$\psi_{k}=\alpha_{n} k^{n}+\ldots+\alpha_{1} k+20$ is unitornz dish if at leost one \& $2, \ldots, 2_{n} \& \mathbb{Q}$
ele
Ex. $\quad n=1 \quad x_{k}=\alpha_{1} k+\alpha_{0}$ unit distr $\Leftrightarrow \alpha_{1} \notin \mathbb{Q}$

- Transtations of π^{2} and

$$
f \text { lows on } \pi^{h}
$$

Very similar

$$
\begin{aligned}
& \pi^{k}=\mathbb{R}^{h} / \mathbb{Z}^{n}=\overbrace{\delta^{\prime} \times \ldots \times S^{\prime \prime}}^{n} \\
& \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \varphi: \quad \theta=\left(\theta_{1}, \ldots, \theta_{2}\right) \longmapsto \mathbb{T}^{h} \theta+\alpha, \quad \underbrace{\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)}_{\text {fixed }} \\
& \mu=d \theta_{1} \ldots d \theta_{h} \text { is } \varphi \text {-invaviant }
\end{aligned}
$$

Thm - Ex
same condilia as minimality
φ is (uniquely)evgodie $\Leftrightarrow 1, \alpha_{1}, \ldots, \alpha_{2}$ ave lin. ind ove (Q1)
Pf-Ex: reduu to $e^{2 \pi i\langle k, \theta\rangle}=f$

$$
k=\left(k_{10} \ldots, k_{n}\right)
$$

Likwise \rightarrow unifoum distribulious...

For flows on π^{h}

$$
\begin{aligned}
\varphi^{t}(\theta) & =\theta+t \cdot \alpha \\
& \left.=\left(\theta_{1}+t \alpha_{1}\right), \theta_{n}+t \alpha_{n}\right)
\end{aligned}
$$

Tho - Ex
φ^{t} is (uniquely) ergodic
$L \Rightarrow \underbrace{\alpha_{1}, \ldots, \alpha_{n} \text { ave lin ind over } Q}_{\text {same condition as minimality }}$

Toval Endomosphisues
a pew elan

- $A \in S L(n, \mathbb{Z})$

$$
\begin{aligned}
& \text { integen entries } \begin{array}{l}
\text { det } A=1 \\
\pi^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n} \quad A: \mathbb{Z}^{n} 巴 S L(n, \mathbb{Q}) \\
\Rightarrow A: \pi^{n} \rightarrow \pi^{2} \\
x \mapsto A x
\end{array}
\end{aligned}
$$

- $\mu=d x_{1} \ldots d x_{n}$ is invoviart : $\operatorname{det} A=1$
- wlot ave fixed/peviodr pts

$$
\rightarrow \quad A O=0 \Rightarrow 0 \in F_{i x}(A)
$$

$\Rightarrow \delta_{0}$ is invorial 6
$\Rightarrow A$ is uot uniquely ergodie, not minimal
\rightarrow othr fixed or periotic pts
$*$ is k-periodoc

$$
A^{k} x=x \quad \text { in } \pi^{k}
$$

Lifloy to $\mathbb{R}^{2}: A^{k} x=x+i n$ iger vectos
Dd A is mypebolic of
A les no eijenvalues with obs value 1

Ex $\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right) \leftarrow \begin{aligned} & \text { Arnold's ot map } \\ & \text { is hyprbolor }\end{aligned}$
$\frac{E x}{P}$ A is hyperboliz \Rightarrow pa. phore $P_{\text {[кれ]? }}$
l.9. A is heperbolic

Thm A has no eisenvalue which is

$$
\begin{aligned}
& \text { a root of unity } \\
& \Leftrightarrow A \text { is engodic }
\end{aligned}
$$

11
Con A has no eigenvalue ubich is a root of unity
$\Rightarrow A$ los a dense orbit
In fect $\theta(x)$ is derse for a.a. $x \in \prod^{n}$

Rmk: when $n=2$:
no root of unity \Leftrightarrow hyperbolic

- $n>2$; Probobly not?

Pf:
Recall:

- A ergodic: every invariant set has $\mu=0$ on $\mu=1$
- A not ergodic: \exists inv. set X with $0<\mu(X)<1$ con have L^{\prime}

$$
\Leftrightarrow \quad \exists \text { an inv } f \in(2 \infty)^{0,} L^{2}
$$

Toke $\quad f=x_{x}$

- In the other alivection toke $X=\{$ x $\mid \quad f(x) \leq c\}$ Lon a suitable e.

\Rightarrow Meed to show
A hyperbolic \Leftrightarrow every invariant $f \in L^{\infty}$ is contact
\Leftrightarrow Assume that A has an eigenvalue which is a root of unity.
Goo: construct an invoriaut furctia $f \in<^{\infty}$
- The some is true for $B:=A^{\top}$:

$$
\begin{aligned}
& \Rightarrow q \geq 1 \text { s.t. } B^{q} v=v, v \in \mathbb{R}^{n} \\
& \Leftrightarrow\left(B^{q}-I\right) v=0
\end{aligned}
$$

Ex. Prove that $v \in \mathbb{Q}^{n}$ and hence eon assume oe \mathbb{Z}^{n}

- Toke thu smallest go with this property

$$
\begin{aligned}
\Rightarrow \quad e^{2 \pi i\left\langle v, A A^{2} x\right\rangle} & =e^{2 \pi i\left\langle 8 v_{0} x\right\rangle} \\
& =e^{2 \pi i\langle v, x\rangle}
\end{aligned}
$$

Set $f(x)=\sum_{j=0}^{q-1} e^{2 \pi i\left\langle v, A^{j} x\right\rangle} \in L^{2}\left(\pi^{n}\right)$

$$
\begin{aligned}
& =\sum_{j=0}^{j=0} \\
& =e^{q-1} e^{2 x i}\left\langle B^{d} v, x\right\rangle
\end{aligned}
$$

$$
c^{\infty}\left(N^{2}\right)
$$

Ex. $\quad f \neq \operatorname{cons} t<\sigma \neq 0$.
use the fat tut of is minimal deg

Claim: $f(A x)=f(x)$ invoriact

$$
\begin{aligned}
\text { Pf } f(A x) & =\sum_{j=0}^{q-1} e^{2 \pi i\left\langle B^{j+1+j} j, x\right\rangle} v \\
& =\sum_{j=1}^{q-1} e^{2 \pi i\left\langle B^{j} j, x\right\rangle}+e^{\left.2 \pi i\left\langle B-b^{j}\right)^{j}\right\rangle} \\
& =f(x)
\end{aligned}
$$

\Rightarrow No roots of unity
$\Rightarrow N_{0}$ inv. functions

$$
\left.C L^{2} \text { or } L^{\infty} \text { or } L^{\prime} \ldots\right)
$$

Assume f is invariant

$$
\left.\begin{array}{rl}
s \\
f \in L^{2} & \text { and } f\left(A^{m} x\right)=f(x) \quad \forall m \in \mathbb{Z} \\
f(x) & =\sum_{l \in \mathbb{Z}^{n}} f_{l} \exp (2 \pi i<l, x>) \\
\quad \text { Nell } \quad f_{l}=0 \\
l
\end{array}\right)
$$

$$
\begin{aligned}
& \forall l \in \mathbb{Z}^{n} \\
& \ldots=f_{B^{\prime l} l}=f_{l}=f_{B l}=f_{B^{2} l}=\ldots \\
& \text { i.e. } f_{l}=f_{B^{m} l} \quad \forall m \in \mathbb{Z} \quad \forall l \in \mathbb{Z}^{m}
\end{aligned}
$$

Goal: $l \neq 0 \Rightarrow f_{e}=0$

$$
\begin{aligned}
& \int_{\text {Hence }}^{\text {Note }:} \underbrace{\left|f_{l}\right| \rightarrow 0 \text { as }|l| \rightarrow \infty}_{\sqrt{f} f \in L^{2}}
\end{aligned}
$$

Assume $f_{l} \neq 0, l \neq 0$

$$
\Rightarrow \quad B^{m} l, \quad m \in \mathbb{Z} \text { con toke only }
$$

$\{$ finitely many values Indeed Assume not: then

$$
\Rightarrow f_{e}=f_{B^{m_{s}} e} \longrightarrow 0
$$

only finitely

$$
\Rightarrow f_{e}=0
$$

in a bale

$$
\begin{aligned}
& B^{m} s l \rightarrow \infty^{4} \text { for some } \\
& m_{s} \rightarrow \pm \infty
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow B^{m_{1} l}=B^{m_{0}} l \quad m_{1}>m_{0} \\
& \Rightarrow B^{\frac{m_{1}-m_{0}}{l} l} l=l \\
& \Rightarrow B^{q} l=l \longleftarrow \text { eigenvector }
\end{aligned}
$$

\Rightarrow an eisenvalue whreh is a root of unity?

Go through, the The and pf again

Lecture 7
02/25-2022
$\frac{\text { A stronger ergodicity property: }}{\text { Mixing (Digression) }}$
Def $\varphi:(M, \mu) \equiv$ is mixing if
Roots in

$$
\begin{aligned}
& \forall A, B \text { (measurable) probability } \\
& \mu\left(\varphi^{-k}(A) \cap B\right) \underset{k \rightarrow \infty}{\rightarrow} \mu(A) \mu(B) \text { theory }
\end{aligned}
$$

Rok $\cdot \varphi^{-k}(A)=\left\{x \mid \varphi^{k}(x) \in A\right\}$ is alefined \& Obsevitions even when φ is not invertible

- Prefer to think as

$$
\mu\left(\varphi^{k}(A) \cap B\right) \rightarrow \mu(A) \mu(B)
$$

- $\mu(A) \neq 0, \mu(B) \neq 0$

- Topological counter past (top mixing) $\varphi^{-k}(U)_{n} V \neq \varnothing \quad \forall$ lave k
I. Mixing \Rightarrow Top Mixing when μ (open) >0
- Mixing \Rightarrow Ergodic

Pf. Ergodic $\Leftrightarrow \forall$ inv set A

$$
\underbrace{\mu(\underbrace{M, A}_{B})=0}_{\mu(A)=0 \text { or } \mu(A)=1}
$$

- φ mixing A invoviat: Need

$$
\begin{gathered}
B=M \backslash A \\
\underbrace{\varphi^{-k}(A)}_{A} \cap \underbrace{B}_{M L A}=\varnothing \\
0=\mu\left(\varphi^{-k}(A) \cap B\right)
\end{gathered}
$$

$A \& B$ never mix

Rusk. Similarly for flows

- other notions of mixing
(week, etc)...
- isometries ave not (top) mixing
\Rightarrow rotations of $S^{\prime \prime}$, troalations of π^{n}, linctlows an π^{k} ave not mixing
mixing \Rightarrow evgodieity
* unique ergodicity
- Hyperbolic $A: \pi^{2} \rightarrow \pi^{2}$
ave mixing [KH]

- Exauples continued:

Shift Tvausformetions

Setting:

- $\mathbb{Z}_{m}=\{0, \ldots, n-1\}$ an alphebet
- $M=\mathbb{Z}_{m}^{\mathbb{Z}}=\left\{x=\ldots x_{-1} x_{0} x_{1} x_{2} \ldots\right\}$
$=$ bi-inf ${ }^{-1}$ sequences
compeet metvic space
- $\varphi: M \rightarrow M$ shift to the left

$$
\begin{aligned}
& \varphi(x)_{i}=x_{i+1}, \text { homeo } \\
& x_{2} x_{-1} x_{0} x_{1} x_{2} x_{3} \ldots
\end{aligned}
$$

- Rumb \mathbb{Z}_{n} a gp $\Rightarrow M=\mathbb{Z}_{m}^{\mathbb{Z}}$ is a conpact top. gp φ is a gp homomorphism
- Inv measures. (Bervoulli measuzes)

$$
\text { - Fix } \quad 0<p_{i}<1 \quad i=0, \ldots, n-1
$$

$$
\sum P_{i}=1 \quad \text { puobobility }
$$ of $a_{i} \in \mathbb{Z}_{n}$

- Cylinders

$$
\begin{aligned}
I & =\left(i_{1}, \ldots, i_{s}\right) \quad \text { multiindex } \\
Y & =\left(a_{1}, \ldots, a_{s}\right) \in \mathbb{Z}_{m}^{3} \\
C_{Y}^{I} & =\left\{x\left|x_{i_{j}}=a_{i_{j}}\right| \forall i_{j} \in I\right\}
\end{aligned}
$$

These also form
$\ldots x_{-1} x_{0} x_{1} \ldots x_{i} \ldots$ a base of the
11 top of \mathbb{z}_{m}
Del

$$
a_{i j}
$$

$$
\mu\left(C_{Y}^{I}\right)=P_{a_{1}} \cdot P_{a_{2}} \ldots \cdot P_{a_{s}}
$$

$$
P_{i}=\mu\left(a_{i}\right)
$$

$$
\begin{aligned}
& \text { is फ̈'k produot } \\
& \text { meastre }
\end{aligned}
$$ meashre

\Rightarrow Extend to a meesue
$\Rightarrow a$ e irvariont measue μ or M (Probability, Bovel)

Ex $P_{i}=\frac{1}{n}$: all a_{i} hove the some prob \Rightarrow Hhe Haan measue on $\mathbb{Z}_{n}^{\mathbb{Z}}$ CinvariaA under rifit or left translatious, μ (open) >0

Recall top properties of φ :

- dense periodic pb= periodic seq x_{i} $p(k)=n^{k} \leftarrow \#$ of pen pts of per k
- top transitive: \exists a dense orbit

On the measure theory side:
Thu φ is mixing for μ

$$
\Rightarrow
$$

Con φ is ergodic 8 top mixing
Reeks: φ is not ciniquely ergodic
epee. artibs or different $\left\{p_{i}\right\}$) and not minimal

- similarity with hyperbolic

$$
A: \pi^{k} \rightarrow \pi^{k}
$$

Pf [KM]

- Observations: enough to check mixing when A \& B are cylinders

$$
\begin{array}{llll}
\ldots & x_{i_{1}} \ldots x_{j} \ldots \ldots x_{i_{2}} \ldots \ldots \\
n_{1} & a_{i_{1}} & \ldots & \\
& a_{i_{2}-\cdots}=r
\end{array}
$$

Need $\mu\left(\varphi^{-k}\left(C_{Y}^{I}\right) \cap C_{X}^{J}\right) \rightarrow \mu\left(C_{Y}^{I}\right) \mu\left(C_{X}^{J}\right)$ for any two such cylinders different length

$$
\begin{aligned}
& \text { - Note } \cdot \varphi^{-k}\left(C_{Y}^{I}\right)=e_{Y}^{I+k 3} \\
& I+k_{0}\left(i_{1}+k_{,}, i_{s}+k\right) \\
& \Rightarrow V I \& J \\
& \varphi^{-k}\left(C_{\psi}^{I}\right)=C_{Y}^{I+k} \quad \rightarrow \begin{array}{c}
\text { disjoint } \\
\end{array} \begin{array}{l}
\text { from } J \\
\text { when } k \text { is }
\end{array} \\
& \text { when } k \text { is large }
\end{aligned}
$$

- Recall

$$
Y=\left(a_{1}, \ldots, a_{s}\right)
$$

$$
\mu\left(c_{y}^{I}\right)=P_{a_{1}} \ldots P_{a_{s}}
$$

$$
\begin{array}{cl}
\text { • } L_{\cap J}=\varnothing & Y=\left(a_{1} \ldots a_{s}\right) \\
C_{Y}^{L} \cap C_{X}^{J}=C_{Y \cup X}^{L \cup J} & X=\left(b_{\left.1, \ldots, b_{r}\right)}\right. \\
\Rightarrow \mu\left(C_{Y}^{L} \cap C_{I}^{J}\right)=\mu\left(C_{Y}^{L}\right) \cdot \mu\left(C_{X}^{J} J\right.
\end{array}
$$

$$
a_{1} \ldots a_{s} b_{1} \ldots b_{r} \quad a_{1}-a_{s} \quad b_{1} \ldots b_{n}
$$

- $L=I+k \quad k$ is large disjoint ham J

$$
\begin{array}{ll}
& C_{Y}^{L}=C_{Y}^{ \pm+k}=\varphi^{-k}\left(C_{Y}^{I}\right) \text { disjoint } \\
\Rightarrow & \varphi^{-k}\left(C_{Y}^{I}\right) \cap C_{X}^{J}=C_{Y}^{(L)} \cap C_{x}^{(J)} \\
\Rightarrow & \mu\left(\varphi^{-k}\left(c_{Y}^{I}\right) \cap C_{X}^{J}\right)=\mu\left(\varphi^{-k}\left(C_{Y}^{I} s\right) \mu\left(C_{x}^{J}\right)\right. \\
\Rightarrow & \text { mixing }
\end{array}
$$

Probabilistic Auden porctotyen

- $\mathbb{Z}_{2}=\{0,1\} ; P_{0}=P_{1}=1 / 2$ unbiased
- $M=b_{i}-i n f$ sequences of $0 \& 1$ is
- each sequence
= sequence of coin tosses, an experiment

$$
0=\text { heads }
$$

$$
1=\text { tails }
$$

$$
\int a \text { trial }
$$

- $I=\{0, \ldots, m\}$
$y=\left\{b_{0}, \ldots b_{m}\right\} \quad b_{i}=0$ or 1
$C_{Y}^{I}=$ event: the first mat tosses give outcome $Y: \mu\left(C_{Y}^{I}\right)=\frac{1}{2^{m+1}}$

$$
\varphi^{-k}\left(c_{Y}^{I}\right)=c_{Y}^{k+I}
$$

$=$ event: the tones $k, \ldots, k+m$ give oast come Y

$$
\lim _{k \rightarrow \infty} \frac{1}{k}\left\{0 \leqslant i \leq k-1 \mid \varphi^{k}(x) \in e_{Y}^{I}\right\}
$$

- frequency with which the sequence Y occurs in x

Ergodicity \Rightarrow for almost all trials x

Ex. Interpret mixing in terms of conditional probability.

$$
\frac{\text { Leeture } 8}{01 / 27-2022}
$$

- Existend of invaviant measerzes
M coupaet uevisie space (seproble) $\varphi: M \rightarrow M$ horneo on just C^{0} we love used:
Fad: φ has an invoviaut (ergodic) measure.

Goal: jushity this
Thm (Krylov - Bogolubov)
M compact, $\varphi: M \xrightarrow{C^{0}} M$

$$
\Rightarrow \exists \text { an invariaut }
$$

Borel probobility measuze

Preliminaries: $\quad M$ as above

- $C^{\circ}(M)=$ Bonach space with

$$
u f u=\sup _{x \in M}|f(x)|
$$

- Dual sfacs:

$$
C^{0}(M)^{*}=\left\{\Phi: C^{0}(M) \rightarrow \mathbb{R} \mid \text { bounded }\right\}
$$

Thm (Riesz Representation Thmi) $C^{0}(M)^{*}=$ the space of finite Rovel measues ju (not necessarily pos)

$$
\Phi(f)=\int_{M} f d \mu
$$

Ruh $\cdot \mu=\mu_{+}-\mu_{-}<$pos. meornes

- Ipos: $f \geqslant 0 \Rightarrow \Phi(f) \geqslant 0$
$\Rightarrow \mu$ is pos
- $\Phi(1)=1 \Rightarrow \mu$ is prabability: $\int \mu=1$
- $\Phi(f \circ \varphi)=\Phi(f) \quad \forall f$ $\Leftrightarrow \mu$ is φ invowiant
$p f$
Ialea: For $x \in M$ set

$$
\mu_{x}(t)=\lim _{x \rightarrow \infty} \frac{1}{x}\left\{0,<i x-1 / \varphi^{i}(x) \in V\right\}
$$

as in Biakhoff ergodic theorem, on

$$
\Phi_{x}(f)=\lim _{k \rightarrow \infty} \frac{1}{k} \sum_{i=0}^{k-1} f\left(\varphi^{i}(x)\right)
$$

and olefine μ_{x} by

$$
\Phi_{x}(f)=\int f d \mu_{x}
$$

Then μ_{x} is on invoriaet probality measiue assuring thet the limeits exist
$E X: x$ is k-periodic

$$
\begin{aligned}
& x=x_{0}, x_{1}=\varphi(x), \ldots x_{i}=\varphi^{i}(x), x_{k}=\varphi^{k}(x)=x_{0} \\
& \varphi^{k}(x)=x=x_{0}
\end{aligned}
$$

$\Rightarrow \mu_{x}=\frac{1}{k} \sum \delta_{x_{i}} \quad$ invariaut Brubability merne

Implemento tion

- Let $f_{j} \in C^{0}(M), j=1,2, \ldots$
be a countable collection cleuse in C^{0} (with. espect to the sup-norm.)
- Picle se and cousiden
$\left.a_{k}^{j}=\frac{1}{k} \sum_{i=0}^{k-1} f_{j}\left(\varphi^{i} c x\right)\right) \leftarrow$ bowndel \forall_{j} -
$\Rightarrow k_{s}(1) \underset{s \rightarrow \infty}{\rightarrow \infty} \quad a_{k_{s}(1)}^{1}$ couverges
$\Rightarrow k_{s}(1)$ coutains a subsequence
$k_{s}(2) \underset{s \rightarrow \infty}{\longrightarrow} \infty \quad a_{k_{s}^{2}(2)}$ also canverfes
Set $k_{s}=k_{s}(s)$ subsequeuce in all of them

$$
\Rightarrow a_{k_{s}}^{j} \rightarrow a_{k_{s} \rightarrow \infty}^{j} \quad \forall j
$$

$\exists \lim _{k_{s} \rightarrow a} \frac{1}{k_{s}} \sum_{i=0}^{k_{s}-1} f_{j}\left(\varphi^{i}(x)\right)=a^{j} \quad \forall j$

$$
\sum^{\Rightarrow} \prod_{k_{s} \rightarrow \infty} \lim _{s} \frac{1}{k_{s}} \sum_{i=0}^{k_{s}-1} f\left(\varphi^{i}(x)\right)=: \Phi_{2}(f)
$$

$\left\{f_{j}\right\}$ dense in $C^{0}(M)$
Riesz Representotion theovem

$$
\begin{aligned}
& \Rightarrow \exists \mu_{x} \text { s.t. } \\
& \Phi_{x}(f)=\int f d \mu_{x}
\end{aligned}
$$

check (Ex):

- $f \geqslant 0 \Rightarrow \Phi_{x}(f) \geqslant 0$ clear
- $\Phi_{x}(1)=1$
- $\left.\Phi_{r}(f \circ \varphi)=\Phi_{x}(f)\right\}$ colmbation
$\Rightarrow \mu_{2}$ is pasilive, prodoability and invariant

Rmk $\operatorname{supp} \mu_{x} c \overline{\theta(x)}$
$\frac{\text { Bmh }}{\left(E_{x}\right)}$ A short cut with moze
functional analysis:
Set

$$
\begin{aligned}
\Phi_{2}^{(k)}(f) & :=\frac{1}{k} \sum_{i=0}^{k-1} f\left(\varphi^{i}(x)\right) \\
& =\left(\frac{1}{k} \sum_{i=0}^{k-1} \delta_{\varphi i(2)}\right)(f)
\end{aligned}
$$

$$
\begin{aligned}
& \left|\Phi^{(x)}(f)\right| \leqslant\|f\| \\
& \Rightarrow \mid \Phi^{(x)} \| \leqslant 1:
\end{aligned}
$$

$$
\Phi_{x}^{(x)} \in \underbrace{\text { unit ball in } C^{0}(M)^{*}}_{\text {weok }^{*} \text { compect } \text { (sequeutially) }}
$$

 pt-wise conversing sibisequeuce: Alaoglu's

$$
\Phi_{x}^{x_{i}}(f) \longrightarrow \Phi_{x}(f) \forall f
$$

thm

This is enentially the def of Ix
Now finirn the prt as above. a
Rnok Con alsu teke

$$
\lim \frac{1}{2 k+1} \sum_{i=-k}^{k} f\left(\varphi^{i}(x)\right)
$$

when φ is inver tible

Rah How often does the lime exist?

Answer: for any φ-inv μ
the limit exist for $\mu-a . a$. $x \quad \forall f$
Hint: combine the Bizlhot ergodic theorem with the pot of Kry2ov - Bogolubov the

- How do ergodic measures enter this picture?

Notation: $\mu_{\varphi}=\{\varphi$-inv. prob. Bowel Measmes $\}$

$$
\begin{aligned}
& \mu=\mu_{\varphi} c C^{0}(M)^{*} \\
& \mu \longmapsto \Phi_{\mu}:=\left(f \longmapsto \int_{M} f d \mu\right)
\end{aligned}
$$

- The image is in the unit sphere $n \Phi \|=1$ and weak* coupoct \& $\Phi_{\mu}(1)=1$
- μ_{φ} is corves:

$$
\begin{array}{r}
0 \leqslant t \leqslant 1, \mu_{\mathscr{m}}=(1-t) \mu_{0}+t \mu_{2} \\
\tilde{\mu}_{\varphi} \leqslant \mu_{\varphi} \quad \mu_{\varphi}
\end{array}
$$

Def μ is an extreme pt of μ if for any encl deconpoosinar a. id $t=0 \quad \circ \quad t=1$

Notation: Ext (h)

Cor $\underbrace{\operatorname{Ext}}_{\operatorname{ext} p b}(\mu) \neq$
Rmk In general: closue

In geveral, whan dim $=\infty$, even the foct tuat

$$
E \times t(\mu) \neq \varnothing
$$

is not abvions
T Thn $\left\{\begin{array}{l}\text { Ergodic } \\ \text { meosura }\end{array}\right\}=\left\{\begin{array}{c}\text { Extrewe } \\ \text { of prhy }\end{array}\right\}$
Pf
"د" $\mu \in M_{p}$, not evgodic:

$$
\exists A \text { with } 0<\mu(A)<1
$$

Set $\left.\mu_{X}(Y)=\frac{\mu(X, Y)}{\mu(X)}\right\} \begin{aligned} & \text { restriction to } X \\ & \text { meative }\end{aligned}$

$$
\begin{aligned}
& \mu_{0}=\mu_{A}, \mu_{1}=\mu_{M \backslash A} \\
\Rightarrow \quad & \mu=\mu(A) \mu_{A}+(1-\mu(A)) \mu_{M, A}
\end{aligned}
$$

$\Rightarrow \mu$ is not an extreme pt
"c" Idea • $\mu_{0}, \mu_{1}=$ estreme pts. \rightarrow enoull $(\Rightarrow$ evgodre)
to hove fro extr

- $\mu_{0} \neq \mu_{1}: \exists A \quad \mu_{0}(A) \neq \mu_{1}(A)$

Form:

$$
\mu=(1-t) \mu_{0}+t \mu_{1} \text { not oxtreme: } t \neq 0,1
$$

Wout to show not ergodir
(A pasticuler cose)

Assume it is Bizkhoff.

$$
\begin{aligned}
& \frac{1}{k} \sum_{i=0}^{k-1} x_{A}\left(\varphi^{i}(x)\right) \xrightarrow{\bullet} \mu(A)=(1-t) \mu_{0}(A)+t \mu_{1}(A) \\
& \quad \Rightarrow \mu_{0}(A)=\mu_{1}(A)
\end{aligned}
$$

A catch: -need x to "a.a." for $\mu_{0} \& \mu_{1}$

- night not essiot
- Bit then supp μ_{0} n supp $\mu_{i}=\varnothing$ and pu is again not ergodic
- A more serious problem: not every nou-extreme pt con be derounposed as $\mu^{\prime}=(1-t) \mu_{0}+t \mu_{1}$
- Not lítevoluy bet...

Need some functional andysis: choquet's them

Con Every $\varphi: M \rightarrow M$ hes an ergodic measene

Con The following deft of unique engodicity ave equivalent:

- ergodic and an ergodic measure is unique
- ergodic and inv measure is unique.

How common is evgodicity?
Setting:

- M a coupact monifdd (berlops uith boundary or corners)
- $\mu=$ smooth measine (Lebesgue)
E.g. $M=$ clored ball or $I^{n}=$ cube
- $H=\{y: M \rightarrow M \mid \mu$-pres honeo $\}$ with sup-topology:

$$
d(\varphi, \psi)=\sup _{x \in M}(\varphi(x), \psi(x))
$$

H has the Baive propesty:
a coundeble inbersectioin of open a derse sebs is clerse
I a vesidual set: deue $\in \delta$ or wore genevally containis a desse Gs
$T h m(O x t o b y$ - Slam)
Ergodic φ form a residual subset jot H, \quad dim ≥ 2

$$
\begin{aligned}
& \text { Ex. Show nut noA-true } \\
& \text { when dim }=1
\end{aligned}
$$

Con Top transitive 4 (i.e. with a oles orbit) for a residual subset of H

Rue - Nothing like chat is true for c^{α}-differs bores g!
RAM

At least when $\operatorname{dim} M=2$ on in the Ham case or...
e. .

- Cl or c^{k} - more subtle

$$
\begin{aligned}
& \text { Avila-Crovisier-Wilkinsow } \\
& \text { Av Xiv } 1408.4252
\end{aligned}
$$

- Not easy to construct $\varphi: D^{2} \rightarrow D^{2}$ with a dense obit

Direct pf of Cor -Outlive
Following [oxtoby]

- $M=$ square $[0,1] \times[0,1]$
$\mu=$ Lebesgue mesne
$\{4: M \rightarrow M \mu$-pres. home $\}=H$
- $\left\{U_{i}\right\}=$ collection of open squares in M with rational vertices
 (top lase)

$$
E_{i j}=\left\{\varphi \mid \exists k \geqslant 1: \varphi^{-k}\left(v_{j}\right)_{\cap} v_{i} \neq \varnothing\right\}
$$

clear key pt

Claim $\forall i . j E_{i j}$ is open and dense

Tho \leftarrow Claim:

$$
\bigcap_{i . j} E_{i . j}=: \underset{\substack{\psi}}{E} \leftarrow \text { residual }
$$

$G_{j}=\bigcup_{k=1}^{\infty} \varphi^{-k}\left(U_{j}\right)$ is open \& dense:

$$
U_{i} \cap \bigcup_{k=1}^{\infty} \varphi^{-k}\left(v_{j}\right) \neq \phi<\varphi \in E
$$

Baire: $G=\cap G_{j}$ is residual in M

$$
\begin{aligned}
& \Rightarrow G \neq \varnothing \\
& \forall j: \quad x \in \bigcup_{k=1}^{\infty} \varphi^{-k}\left(\tau_{j}\right) \\
\Rightarrow & \exists k: \quad \varphi^{k}(x) \in U_{j}
\end{aligned}
$$

$\Rightarrow \theta(x)$ is dense.
Ruin we love shown flat for a residual set of φ 's the set of x will $O(x)$ dense is residual.

Idea of the pf of the Claim

- Given is j and φ need to find an arbitrarily small ψ and $p \in v_{i}$ sit. $(\psi \varphi)^{k}(p) U_{j}$ for some k $\Rightarrow \varphi \psi \in E_{i j \&} \psi \varphi \approx \varphi$
- Can assume out periodic pts of φ form a meager set
- such φ 's form a residual set

Pick $p \in U_{i} \& \quad q \in U_{j}$ and "connect" them $b_{y} a^{J}$ seg.disj oubih $\left\{x_{i} \ldots, \varphi^{n_{i}}\left(x_{i}\right)\right\}$

$$
q=x_{k}
$$

$$
\text { - } F=\text { union of these }
$$ oles

- Ri's: disjoint small open sets

$$
\begin{aligned}
& F \cap R_{i}=\left\{\varphi^{n_{i}}\left(x_{i}\right), x_{i+1}\right\} \\
& R=\| R_{i}
\end{aligned}
$$

- $\psi: \cdot \operatorname{supp} \psi \subset \perp R_{i}$

$$
\text { - } \psi\left(\varphi^{n_{i}}\left(x_{i}\right)=x_{i+1}\right.
$$

- $\|\psi\|_{c}$. is small

$$
0 \Rightarrow(\varphi \psi)^{n_{0}+\ldots+n_{k}}(p)=q
$$

Rama $x_{i}, \varphi^{n_{i}\left(x_{i}\right)}, x_{i+1}, \varphi^{n_{i+1}}\left(x_{i+1}\right)$
ave quite close

$$
\Rightarrow \operatorname{size}\left(R_{i}\right) \sim d\left(x_{i}, \varphi^{n_{i}}\left(x_{i}\right)\right)
$$

\Rightarrow cannot moke

$$
\pi \psi u_{e^{\prime}} \text { small }
$$

$$
\begin{aligned}
& p \approx q, \operatorname{supp} \psi c R \\
\Rightarrow & \psi \approx i d \\
\Rightarrow & \psi \approx i d
\end{aligned}
$$

$$
\begin{aligned}
& \text {-if } \delta \text { is small } \\
& \Rightarrow f c^{0} \text { small } \\
& \text { maxi fl }=S \\
& \text { - } f C^{\prime}-s \text { mall? } \\
& f^{\prime} \sim \frac{\delta}{\varepsilon}
\end{aligned}
$$

\Rightarrow If $\delta \ll \varepsilon$ can moke f 'dismal It $\delta \approx \varepsilon$ cannot
\$ 3 Homeomorphisms of S^{1}
Lecture 9
Generalities: Equivalence

$$
02101-2022
$$

of Dynamics systems

Setting
hones on differ in some

$$
\varphi, \varphi: M \longrightarrow M
$$ reason bile clan $\xrightarrow{\longrightarrow}$ a closed monitold

"Def" φ \& ψ are equivalut if

- usually h is roughly of the some type as φ \& $\psi(e, q$. volume preserving)
- But usually h is orly C^{0} even when $\varphi \& \psi$ are $e^{k}, 1 \leq k \leq \infty$

Want h to preserve the most essential features: periodic orbits, top transitivity, eugodieity...

Q: Any hope of "classiticotion"?
Rn nt: In some limited number of cases, Yes. Overall, No

Related notion: structural stability
"Def" φ is str. stable if

$$
\underset{c^{k}}{\psi \approx \varphi} \Rightarrow \quad \tilde{\imath}^{\varphi}
$$

Rok: rave bent interesting
ster stable property: φ has it \& $y \approx \varphi \Rightarrow \psi$ has it
Rub: move reasonable
Rok (Flows)
The true conj: $\psi^{t}=h \varphi^{t} h^{-1}$
(even when $h \in c \infty$) is usually true reshictive (see below)
\Rightarrow usually just wort h
to send orbits to orbit
but not to presoske time-povametrize Lions

Some comments
and Examples

- "Persistence" of fixed pos under small perturbations
- $\varphi: M \xrightarrow{c^{\prime}} M \leftarrow$ manifolds
- $\varphi(p)=p$
$D \varphi_{p}: T_{p} M \rightarrow T_{p} M$ invertible
$\underbrace{\text { P the "linearization" } \varphi(x)=D y_{p}(x)+\ldots . . . ~}$
Def p is non-deg if
- Dep oloes not have 1 as eigenvalue

Ex $\begin{aligned} & \text { i. } 1 \text { I - Dup is invertible } \\ & \bullet r_{y} \alpha \Delta \text { at } p\end{aligned}$
graph of φ
the diagonal
is $\mathrm{M} \times \mathrm{M}$

Prop-Ex
Assume that p is nou-deg and $\Psi \underset{c^{\prime}}{\approx} \varphi$
\Rightarrow.Near $p \exists$ a fixed pt q of ψ

- $D \psi_{q} \approx D \varphi_{p} \leftarrow$ use a chat cortrime p\&q
inverse function thm

min pentod
Def-Rnk $x=q$-peniodic pt is nou-deg if $x^{q} \in F_{i x}\left(\varphi^{q}\right)$ is voundeg for φq
Rmk $\psi=h \varphi h^{-1}, h \in C^{\prime}$

$$
\begin{align*}
& p \in F_{i x} \varphi \Rightarrow q=h(p) \in F i x(\psi) \\
& T_{p} M \xrightarrow{D \varphi_{p}} T_{p} M \quad \text { if } h \in C^{\prime} \\
& D h \uparrow h^{-1} \\
& T_{q} M \underset{D \psi_{q}}{\longrightarrow} T_{q} M \tag{112}
\end{align*}
$$

\Rightarrow eigenvalues of $D y_{p}=$ eigenvalues of $D \psi_{q}$
easy to choye by a c^{\prime}-suall pest
\Rightarrow Not much hope for "clasifiction" and sto shobility if $h \in C^{\prime}$

Rmik (Flows)
$\varphi^{t}=$ flow of vect. hiell v

$$
v(p)=0 \Rightarrow p \in F_{i} x\left(\varphi^{t}\right) \quad \forall z
$$

In a chast: $v(x)=\operatorname{Dv}_{p}(x)+\ldots$.

$D v_{p}: T_{p} M \rightarrow T_{p} M$

Def p is nohrdey if

- Dvep is "nou-dg" does not have - as an eizerivalue
- Graph $(v) \times \underset{\text { zero sectra }}{\text { M CTM }}$ zeno sectio
Ex. Staly and prove an analopue of Prepfor flows

Rah Assume tut $\psi^{z}=h \varphi^{e} h^{-1} \quad \forall z$ "the conjugation preserves time"
$\Rightarrow \quad \gamma=$ periodic obit of φ^{t}
$\stackrel{\downarrow}{\downarrow}$ with period T
$h(x)=$ periodic obit of ψ^{t} with period T
The period x very easy to chore by a small pertuibetion:
Egg. $v \sim(1+\varepsilon) v$
\Rightarrow Not much hope for str. stbilib on classification when h preserves time.

- Conceptually:
mape in $\operatorname{dim} n \leftrightarrow \leftrightarrow$ flowos in $\operatorname{dim} n+1$

Cross-secitious: φ^{t} flow a Y^{n+1}
 generoted by v

$$
\text { - } \Sigma^{n} c Y^{n+1} \text {, vx }
$$ and the retuln map F is defined

\Rightarrow Dynemics of F ceptures
a lot of dynamies of φ^{t} :
perioda oubib \longrightarrow Perioder obbits
of $F \quad \longrightarrow$ of the flow
colobal cuosections revely exist
Poinceve u'turn ugp

Mappiry touns

$$
F: M \longrightarrow M
$$

$$
\begin{aligned}
& Y=M \times[0,1] / \sim \\
& t(x, 0) \sim\left(F^{-1}(x), 1\right)
\end{aligned}
$$

- v deseends to Y \Rightarrow flow φ^{t}
- $\Sigma=M \times 0$ is
a elossectron
- $F=$ ueturn uop

$$
\operatorname{Per}(F)=\operatorname{Par}\left(\varphi^{t}\right)
$$

F is top y^{t} is top
transibive, \Longleftrightarrow transibive,
evgodte, evgodr,
miniviat miniviol ete ete

Dyhomies
Dynomies of F

$$
\begin{aligned}
& E x-E x \\
& M=S^{\prime}, \quad y: S^{\prime} \xrightarrow{c^{k}} S^{\prime \prime} \quad k=0,1, \ldots
\end{aligned}
$$

orienition pres, homeo or diffes

$$
Y=\xi^{\prime} \times[0,1] /(x, 0) \sim(y(x), 1)
$$

Prove that Y is a e^{k}. mokitold iohich a diffeo $(k \geqslant 1)$ or lomeo $\left(C^{\circ}\right)$ to π^{2}

Sperializing
Lecture 10 02/03-2022
Dynamics or $\$^{\text {sl }}$: questiones

- Flows on Sl or \mathbb{R} ave votur siuple
$\rightarrow \dot{x}=v(x)$ con be inbegroted explicity

$$
\frac{d x}{v(x)}=d t
$$

\rightarrow Easy to visualige:

- Fixed pts $=$ zeros of v
- no pentodie orbits or istenestra dynomis

But houes or diffeo's

$$
\varphi!S^{\prime} \rightarrow S^{\prime}, \quad \delta=\mathbb{R} \mathbb{Z}
$$

can already be very interesting
Soue questions:

- What ave str. stoble wops?
- R_{2} rodtion by α

$$
\theta \rightarrow \theta+2
$$

Is R_{α} equiv $R_{\beta} \quad \alpha \neq \beta$?
Coses: $\alpha=\frac{p}{q}, \quad \beta \& Q$ on $\alpha, \beta \& Q$ on

$$
\alpha=\frac{p_{1}}{q}, \beta=\frac{p_{2}}{q}
$$

- Is $\varphi(\theta)=\theta+\alpha+\varepsilon \sin (2 \bar{n} \theta)$ equivalut to R_{α}
- Con we have el withat periodir orbits and deuse orbits?

Tryivg to auswer \Rightarrow unexpented resul

Rotation number

- Classifiction guestious \leftrightarrow invoriauts
- Rototion mumber $p: \underbrace{\text { Homeo }\left(S^{\prime}\right)}_{H} \longrightarrow S^{\prime}$

Constrection: $\quad \varphi \in H=$ Momeo $_{+}\left(S^{\prime \prime}\right)$

a bift of φ to $\mathbb{R} \rightarrow \mathbb{R}$

$$
\begin{gathered}
x=e^{2 \pi i \theta} \\
\varphi(x)=e^{2 \pi i F(\theta)} \\
\text { use } x \text { for } S^{\prime} \in \mathbb{R}
\end{gathered}
$$

Properties

- $F: \mathbb{R} \rightarrow \mathbb{R}$ is a homeo and str. monotone incvesing
- $F(x+1)=F(x)+1$
- for any two lifts $F_{0} \& F_{1}$ of φ

$$
F_{1}-F_{0}=\cos t \in \mathbb{Z}
$$

- $F^{k}=\underbrace{F_{0} \ldots F^{F}}_{k}$ is a lift of φ^{k}

Set $P_{x}(F):=\lim _{k \rightarrow \infty} \frac{1}{k} F^{k}(x)$ con toke
Prop - the limit exists

- $C_{x}(F)$ is ind. of x : PDF)
- $p\left(F_{0}\right)-p\left(F_{0}\right) \in \mathbb{Z}$
(for any two lift $F_{L} \& F_{0}$ of φ well-defined
Def The rotetion number of φ :

$$
\rho(\varphi)=(\rho(F) \bmod 1) \in \$^{\prime}
$$

other ways to write $P_{x}(F)$:
set $a(x)=a_{\varphi}(x):=F(x)-x$
PI.
$a: \mathbb{R} \rightarrow \xi^{\prime} \rightarrow \mathbb{R} \quad$ 1-penoodir :

$$
\begin{aligned}
\dot{a}(x+1) & =F(x+1)-(x+1)=F(x)-x \\
& F(x)=x+a(x) \\
& \left.F^{k}(x)=: x+a_{k}(x)\right) \\
F^{2}(x) & =F(x+a(x))=x+a(x)+a(x+a(x)) \\
& =x+\underbrace{a(x)+a(\varphi(x))}_{a_{2}(x)}
\end{aligned}
$$

$$
\begin{aligned}
a_{k}(x) & =a(x)+a(y(x))+\ldots+a\left(\varphi^{k-1}(x)\right) \\
\Rightarrow P_{x}(F) & =\lim _{k \rightarrow \infty} \frac{F^{k}(x)-x \operatorname{con}^{\operatorname{lwons}}}{k} \operatorname{ad} k^{k} \\
& =\lim _{k \rightarrow \infty} \frac{a_{k}(x)}{k}
\end{aligned}
$$

Ex. 1) $\varphi(x)=R_{\alpha}(x)=x+\alpha<$ voth hion in α

$$
\begin{aligned}
& F(x)=x+\frac{\alpha+a u}{a(s u)} \\
& \\
& F^{\prime}(x)=x+\frac{k \alpha}{a_{k}}(x s \\
& \Rightarrow
\end{aligned}
$$

2) $\quad \varphi(2)=x+\alpha+\varepsilon \sin (2 \sqrt{x} x)$

Thinge gAt complicohed $\rho(\varphi)$ depends on α \& ∇_{0}^{∇}

Pf of the proposition

- Independence of x
$F^{k}=$ a $l i f t$ of y^{k} : monotone π

$$
\begin{gathered}
x \leqslant y \leqslant x+1 \\
\Rightarrow \quad F^{k}(x) \leqslant F^{k}(y) \leqslant F^{k}(x)+1 \\
\frac{1}{k}|\underbrace{F^{k}(x)-F^{k}(y)}_{n}| \leqslant \frac{1}{k} \rightarrow 0 \\
1 \\
x \leqslant y \leqslant x+\frac{*}{k} \\
\text { when } \\
\frac{1}{k}\left|F^{k}(x)-F^{k}(y)\right| \leqslant \frac{r}{k} \rightarrow 0
\end{gathered}
$$

- Existence

Lemma Assume a_{k} on arb seq

$$
\begin{aligned}
& \text { st. } \quad a_{n+m} \leq a_{n}+a_{k}+b \text { eg. } L=0 \\
& a_{n+m} \leqslant a_{2}+a_{n} \\
& \text { subadditive }
\end{aligned}
$$

Pf SA $a:=\lim \inf \frac{a_{k}}{k}$ Acsume $a>-\infty$
of thi Levima

$$
a=-\infty: e x
$$

Toke n so large Chat

$$
\frac{a n}{n} \leqslant a+\varepsilon / 3 \text { and } \frac{L}{n} \leqslant \frac{\varepsilon}{3}
$$

Nole $a_{2 n} \leqslant 2 a_{n}+L$

$$
\begin{aligned}
& a_{3 n} \leqslant 3 a_{n}+2 L \\
& a_{l n} \leqslant l a_{n}+(l-1) L
\end{aligned}
$$

Write $k=n \cdot l+r, \quad 0 \leqslant r \leqslant n-1$

$$
\begin{align*}
& \frac{a_{k}}{k}=\frac{a_{n l+r}}{k} \leqslant \frac{a_{n l}+a_{2}+h}{k} \\
& \leqslant \frac{a_{n l}}{k}+\left(\frac{a_{2}+b}{k}\right) \rightarrow 0 \quad \text { bonkdel } \\
& \leqslant \frac{l a_{n}+(l-1) L}{l n+r}+\frac{a_{r}+L}{k} \\
& \leqslant \frac{l a_{n}}{l n+r}+\frac{(l-1) L}{l n+r}+\frac{a_{2}+L}{k} \\
& \leqslant \frac{a_{n}}{n}+\frac{\frac{L}{n}}{<\frac{\varepsilon+\varepsilon / 3}{2}}+\frac{\frac{a_{q}+L}{k} \leqslant a+\varepsilon}{<\frac{\varepsilon_{/ 3}}{<\rightarrow \infty}} \\
& \Rightarrow a<\frac{a_{k}}{k}<a+\varepsilon \Rightarrow \text { lim exorts } \tag{124}
\end{align*}
$$

Bock to the if.
Recall $a_{k}(x)=F^{k}(x)-x=: a_{k}$
Claim e $a_{n+m} \leq a_{n}+a_{m}+1$
Pf $a_{n+m}=F^{n+m}(x)-x$

$$
=\underbrace{F^{n}\left(F^{n}(x)\right)}_{F^{n}(y)}-\underbrace{F^{m}(x)}_{y}+\underbrace{F^{m}(x)-x}_{a_{m}}
$$

$$
\begin{aligned}
& x+k \leq y \leq x+k+1 \\
& \left.\begin{array}{l}
F^{n} \nearrow \\
F^{n}(z+1)=F^{4}(z)+1
\end{array}\right\} \Rightarrow \\
& \underbrace{F^{\prime \prime}}_{F^{n}(x+k)} \leqslant F^{\prime \prime}(y)+k \\
& F^{\prime \prime}(x) \leq \underbrace{F^{n}(x+b+1)}_{F^{n}(x)+k+1} \\
& F^{n}(y)-y \leq \underbrace{F^{n}(x)+k+1-x+k}_{F^{n}(x)-x+l=a_{n}+1}
\end{aligned}
$$

Lemma + Claim $\Rightarrow \lim \in[-\infty, \infty)$ excots $<$

Ex i $\frac{a_{n}}{n}$ bounded frow below

$$
\Rightarrow \quad \lim \in \mathbb{R}
$$

To summavize:
Lecture 11
$a(y(x))$

$$
02 / 08-2022
$$

$$
\varphi: s^{11} \rightarrow s^{11}
$$

$$
p(y)=\lim _{k \rightarrow \infty} \frac{1}{k}\left(a(x)+a(y(x))+\ldots+a\left(y^{k-1}(x)\right)\right)
$$

Prop-Properkies
(a) ρ is conjugohion invorient

$$
p\left(h \varphi h^{-1}\right)=p(\varphi)
$$

(b) $p(\varphi)=\frac{p}{q} \in Q<\varphi$ has a q-periodic orbit $t \Rightarrow$ all peniodic obits of φ hos the seme minimal period of
(c) $\rho: H \rightarrow \xi^{\prime}$ is continuous with respect to the sup-novm

Pf
a) $F=a$ lift of φ

$$
\begin{aligned}
& M=\ldots-\cdots(0) \in[0,1) \\
& \Rightarrow \quad H^{-1}=\cdots \cdots h^{-1} \quad H^{-1}(0) \in[0,1] \\
& \Rightarrow M F M^{-1}=-\ldots h \varphi h^{-1} \\
& 0 \leqslant H(1)=H(0)+1 \leqslant 2 \\
& \Rightarrow \quad|M(x)-x| \leqslant 2 \quad \forall x \in[0,1) \\
& \Rightarrow \forall x \in \mathbb{R} \\
& \Rightarrow \quad\left|M^{-1}(x)-x\right| \leqslant 2 \quad \text { (similar) (2) }
\end{aligned}
$$

Similarly

$$
\begin{align*}
& \quad|y-x|<2 \Rightarrow\left|F^{n}(y)-F^{n}(x)\right| \leqslant 3(3) \\
& \left|H F^{n} H^{-1}(x)-F^{n}(x)\right| \\
& \leqslant \underbrace{\left|H\left(F^{4} H^{-1}(x)\right)-F^{n} M^{-1}(x)\right|}_{\leqslant 2 \text { by }(D)}+\underbrace{\left|F^{n} M^{-1}(x)-F^{n}(x)\right| \leqslant 2}_{\left|F^{n}(y)-F^{n}(x)\right| \leqslant 3 b_{y}(3)} \\
& \leqslant \\
& \Rightarrow \\
& \Rightarrow \frac{1}{n}\left|H F^{n} H^{-1}(x)-F^{n}(x)\right| \leqslant \frac{5}{n} \rightarrow 0 \tag{127}\\
& \Rightarrow \quad P_{x}\left(H F H^{-1}\right)=P_{2}(F) \Rightarrow \rho\left(h y h^{-1}\right)=\rho(y)
\end{align*}
$$

b)

$$
\begin{aligned}
& \Leftrightarrow \quad x_{0}, \varphi\left(x_{0}\right), \cdots \varphi^{q-1}\left(x_{0}\right), \varphi^{q}\left(x_{0}\right)=x_{0} \\
& \Rightarrow \quad F^{q}\left(x_{0}\right)=x_{0}+p \\
& F^{k q}\left(x_{0}\right)=x_{0}+\sum^{k p} \\
& \Rightarrow p(\varphi)=\lim _{k \rightarrow \infty} \frac{a_{k q}}{k q}=\frac{p^{k}}{q}
\end{aligned}
$$

$\Rightarrow[\mathrm{KH}]$ on [Arnold] er Ex
Hint: Reduce to y^{q} hor a fixed pt where $p(\varphi)=\frac{r}{q}$: Then $p(\varphi)=0$

$$
\begin{aligned}
\text { • } F & =\operatorname{lift} \text { with } F(0) \in[0,1] \\
& 0<a(x)=F(x)-x<1 \\
\Rightarrow & \delta<a(x)<1-\delta \quad \delta>0 \forall x \\
\cdot \Rightarrow & \delta \leqslant \frac{F^{n}(0)}{n} \leqslant 1-\delta \Rightarrow \rho(\varphi) \neq 0
\end{aligned}
$$

c) $[k+l]$
$\operatorname{Cov}(\rho a)): \rho(\varphi) \neq \rho(\psi) \Rightarrow \rho^{\&} \psi$ are not conj $\Rightarrow R_{\alpha}$ is bop conj $R_{\beta} \Leftrightarrow \alpha=\beta \& R_{\alpha}=R_{\beta}$ tot by α

Applications

1. stre stable difter's of. S^{\prime}

Q: Do we have sh sheble differs of $S^{\prime \prime}$?
Exo. R_{α} is never sm shable

$$
R_{\beta}^{\alpha} \approx R_{\alpha} \alpha \approx \beta \text { but } R_{\beta} \nsim R_{\alpha} \alpha \neq \beta
$$

Ex1. $\quad v: \mathbb{R} \rightarrow \mathbb{R} \quad$ 2-periodic
Ex $\quad \frac{v(x)=0}{\text { somewtere }} \Rightarrow v^{\prime}(x) \neq 0$

$$
\forall t \neq 0 \quad \varphi=\varphi^{t}: s^{\prime} \rightarrow S^{\prime} \text { is mon-dig }
$$

all pentodre obbl3 are noond

$$
P_{e n}=F i x=\{v=0\}
$$

$$
\begin{array}{ll}
\Rightarrow \rho(\varphi)=0 & \text { Pf of str stability } \\
& \text { is tidioun bet not }
\end{array}
$$

Prep difficuet

Ex2 $v=v . f$ on s^{\prime}
Ex $\cdot Y=\{v=0\}_{\neq \varnothing}$ invainant under $R_{1 / q}$

- $v^{\prime} \neq 0$ at $Y \neq \varnothing$
$\psi=$ the flow of v in time $t>0$

$$
\varphi=R_{p / q} \circ \psi \quad(P \in q)=1
$$

$\Rightarrow \cdot \varphi$ is non-dy all periodre sbit has peniod q

- U is shos shoble \& tedian put not difficuet
- $\rho(\varphi)=\frac{p}{q}$

Rnk i) Con replace $R_{1 / q}$ by any \mathbb{Z}-action on δ^{\prime} and v by an inv. ubd \Rightarrow diffeounosp hre excupple
2) Rouglaly speokily every str stable difteo of $S^{\prime \prime}$ hs this form:

Thy $\varphi: S^{\prime} \xrightarrow{c^{2}} S^{\prime \prime}$ is sh stable
$\Leftrightarrow \quad \rho(y)=7 / 8 \in Q$ and all periodic obits of y are nou-dy

Rink: then all pentode obits hove pesto q
con str stable $y: s^{\prime} \rightarrow s^{\prime}, e^{k \geq 2}$
A form on open and ólense set in e^{k} topology

A very rove phenomenon
Rush - A bit counter intrrihive: \exists "moe" φ with $p(\varphi) \in \mathbb{Q}$ than wite pi y) $\& \mathbb{Q}$

- Tbs Deujoy's Abm - next 4pdion - [Arnold]

2. What about irrational e?

$$
02 / 20-2022
$$

The (Denjoy)

$$
\begin{aligned}
& \varphi: S^{\prime} \xrightarrow{c^{2}} S^{\prime}, \rho(\varphi) \notin \mathbb{Q} \\
& \Rightarrow \quad \varphi \sim R_{\alpha}
\end{aligned}
$$

Cor $\rho(\varphi) \notin Q, \varphi$ is c^{2}
$\Rightarrow \varphi$ is uniquely ergodic
(and hence $\underbrace{\text { binal }}_{\text {every an bit is dense }}$
Rank: the invoricut measen is usually not the Lebesgue measure when

$$
\begin{aligned}
y= & h R_{\alpha} h^{-1} \\
\text { it is } & h^{*} \mu_{\text {Lebesgue }} \neq M_{\text {zedesgue }} \\
& \text { unless } y=R_{\alpha}
\end{aligned}
$$

but still condinuous

Pf (Ont line - steps) bidden in The
,)

$$
\begin{aligned}
& \text { Pick } x \in S^{\prime}: \alpha=\rho(\varphi) \\
& \text { Pto existence of } \rho(y) \\
& \Rightarrow n \quad\left\{\varphi^{j}(x)\right) \overline{0 \leqslant j \leqslant n\}} c, S^{\prime \prime}
\end{aligned}
$$ pf Cir be any

has the same uselic radon

$$
\text { as }\left\{R_{\alpha}^{j}(x)\right\}=\{x+j \alpha\} \text {. }
$$

\Rightarrow enough to show that an orbit $\left(\Leftrightarrow\right.$ every on $\left.b_{0}-7\right)$ is dense Then extend h by coutiunity

$$
R_{\alpha} h=h \varphi
$$

2) Assume not. Pick I es' sot.

$$
\theta(x) \cap I=
$$

$\Rightarrow \quad \varphi^{j}(I), j \in \mathbb{Z}$ ave mutually Easy disjoint:

$$
\begin{aligned}
& \varphi^{i}(I) \cap \varphi^{j}(I)=\varnothing \\
& \text { set } I_{j}=\varphi^{j}(I) \\
\Rightarrow & \sum_{j=-\infty}^{\infty}\left|I_{j}\right|<\infty \\
\Rightarrow & {\left[\left|I_{j}\right| \longrightarrow 0 \quad j \rightarrow \pm \infty\right.}
\end{aligned}
$$

Note

$$
\left.\begin{array}{rl}
\left|I_{1}\right| & =\int_{I_{0}}\left|\frac{d \varphi}{d x}\right| d x \\
1 I_{2} \mid & =\int_{I_{1}}\left|\frac{d \varphi}{d x}\right| d x
\end{array}\right\} \begin{aligned}
& \text { connects } \\
& \left|I_{j}\right| \text { and } \frac{d \varphi}{d x}
\end{aligned}
$$

3) \leftarrow This where the moot effort goes
$\frac{d \varphi^{ \pm 1}}{d x} \frac{\text { bounded voriotion }}{\pi^{+\infty}}\left(\right.$ or vother $\left.\ln \left|\frac{d \varphi^{ \pm 1}}{d x}\right|\right)$

$$
\Rightarrow \sum_{j=-\infty}^{+\infty}\left|I_{j}\right|=\infty \quad \longrightarrow \longleftarrow
$$

Rok f bounded voisiokiar or $I=[0,1]$:
\rightarrow partition $X_{i}:=x_{0}<x_{1}<\ldots<x_{4}=1$
\rightarrow var $=\sup \sum\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right| \leq \infty$
when f is $C^{\prime}, \quad x$ j

$$
=\int_{0}^{1}\left|f^{\prime}\right| d x
$$

- $e^{l} \Rightarrow$ Lipshitz \Rightarrow Bounded voriotion monotone \Rightarrow Bounded voviokion

$$
=|f(1)-f(0)|
$$

Q - What happens when φ is not C^{2}
\rightarrow say only C^{\prime} or $C^{0},\left(\frac{p l \varphi) \& Q Q}{k \rightarrow 0}\right.$

- When can we have h $C^{k>0}$ in Donjon theorem?
Focus or chis question

Digrestion: C^{0} vs C^{1}
set $C^{\prime}=C^{\prime}([0,1]), c^{0}=C^{0}([0,1])$

$$
c^{\prime} \underset{\neq}{ } c^{0}
$$

But kow for from being ditterentiable a co-furction ean be

Construction:

$$
\begin{array}{r}
f(x)=\sum_{n=1}^{\infty} \frac{1}{2^{n-1}} g\left(2^{n-1} x\right) \\
f(x)=g(x)+\frac{1}{2} g(2 x)+\frac{1}{4} g(4 x) \\
7 \ldots
\end{array}
$$

coverges uniterny

$$
\Rightarrow f \in c^{0}
$$

Ex. Prove Chut f is nowhere monofove and nocolure differentioble
Ref: Gelboum \& Olmstead
"Counter examples in Awolyes"

Amh - movotone \Rightarrow olmost evergkere (Lebesque)

- Bet a funclian can be everywhere di fer eutiable (but ust e^{l}) but nowhere uronstove (very havd)

A difterent approach:
Thm Nowlure diffeventiable func kions form a seiond cotegory set in C° Equivalatly: funchious ditt at one pt form a meager (fizat celegory) cet D in c°.
coundeble union of nawlere dense elosed sets
Ref: [Oxtoby]

Ontline of the pf
Step 1

$$
E_{n}=\left\{f \in C^{0}| | f(x+h)-f(x) \mid \leqslant n \nmid \exists x \forall h\right\}
$$

cleary a function diffeventioble (o. the ripht) at some pt x is in E_{h} forsanh: $\cup E_{n} \supset \mathbb{D}$
funchsoms detterentiable af one pt
Ex thow Thet E_{n} is closed
step 2
Ex show that En is noulne dense
Hint: approximote f ac c^{0} by p-wise linear fructions ff

- approximete \hat{f} by a sawtaotk fuuction.

$$
\text { Steps } 1+2: \otimes \subset \cup E_{n}
$$ is meager \quad

- Denjoy's example

Lecture 23

$$
02 / 17-2022
$$

Aternotive: $\cdot \rho(\varphi) \in \mathbb{Q} \Leftrightarrow \varphi$ has a per. orbit

- $\rho(\varphi)=\alpha \notin Q \Leftrightarrow \varphi \sim R_{2}$
aloes not
\Rightarrow all orbits are derce
Q: The role of C^{2} ?
Thu (The Denjoy example)

$$
\exists \text { a } c^{\prime}-\operatorname{dif(és} \quad \varphi: S \rightarrow S_{s}^{\prime}
$$

with $p(\varphi)=\alpha \& \mathbb{Q}$ (Hence no per. orbit) and no debase orbits.

Rum. Con make y a $C^{1+\varepsilon}$ diffed but not a C^{2}-diffed (Denjoy Thu)

- Con woke y c^{∞}-sunosis but not a c^{∞}-differ (φ^{-1} is not $c^{1 \infty}$)

Idea of the construction (For $C^{0} \varphi$!

$$
\begin{aligned}
& \text { • } x_{n}=R_{\alpha}^{n}(x) \\
& \quad l_{n}>0 \\
& \sum_{n \in \mathbb{Z}} l_{n}<\infty \\
& \left|I_{n}\right|=l_{n} \\
& \\
& \varphi_{n}: I_{n} \rightarrow I_{n+1}
\end{aligned}
$$

- Cart S^{\prime} at each x_{4} and incest In bet \&'again. To be mise precise, coushrult $11 I_{n} \longrightarrow S^{\prime}$ so Fut

$$
\nabla: S^{\prime} \rightarrow S^{n}
$$

$I_{n} \rightarrow \mathrm{xen}$ otherwise $\mathrm{l}-1$

- Define $4: \oint^{\prime} \rightarrow \$^{\prime}$ by

$$
\begin{aligned}
& y(x)=\left\{\begin{array}{lll}
\varphi_{n}(x) & \text { if } x \in I_{2} \\
R_{\alpha}(x) & \text { if } x \& \| I_{n}
\end{array}\right. \\
& \Rightarrow \varphi \leqslant \text { a homes }
\end{aligned}
$$

- φ los wo pestodir orbits

$$
\Rightarrow p(\varphi) \& \mathbb{Q} \quad H W: \quad(\varphi)=\alpha
$$

4 lis no dene roils
if $x \in I_{n} \quad \varphi^{4}(x)$ never comes ba ct to I_{n}

* never hiss this interval if $x \& \| I_{n}, \varphi^{k}(x)$ never enters any I_{n}.
looks like a Can tr e

$$
\begin{aligned}
& \tilde{K}=S^{\prime} \backslash v \\
& v=11 \text { int }\left(I_{n}\right)
\end{aligned}
$$

Rna with just a bit mise cover of $l_{n} \& \varphi_{n}($ see $[K H 3)$ con woe φc^{\prime}

$$
\frac{d \varphi}{d x} \in C^{\bullet}
$$

Applicotion: v.f. ar π^{2}
Con \exists a C^{\prime} v.f. on π^{2} without zevoes, or closed arbits on deuse orbib.
Pf. Take $\varphi: S^{\prime} \xrightarrow{c^{\prime}} S^{\prime \prime}$ as in Denjoy's thm

- Form $M=S_{0}^{\prime} \times[0,1] /(x, 0) \sim\left(\varphi^{-1}(x), 1\right)$ the mopping torus
Ex: M is C^{\prime} suafece ond

$$
M \underset{c^{\prime}}{\cong} \pi^{2}
$$

- Dt us v.f. v on $M \cong \pi^{2}, c^{\prime}$ $\varphi=$ time- 1 flow of $v \neq 0$
- Ex: show thut y las no dence orbi's or periodie osbils
- Digrenion to umber theory:

Diophantine vs Lionville mun berg
$\alpha \gtreqless Q \ll$ olways
$\frac{p}{q} \in Q$ relatively prime
whet's the reference?
Q: How fast con one approximate α by rohional numbers

It turns out one shout compare $\left|\alpha-\frac{p}{q}\right|$ with q ?
Thm $\forall \propto \& \mathbb{Q} \exists \frac{p_{i}}{q_{i}}$ inf many st.

$$
\left|\alpha-\frac{P_{i}}{q_{i}}\right|<\frac{1}{q_{i}^{2}} \rightarrow 0
$$

Rail Con do $1 \alpha-P_{i} / q_{i}<\frac{1}{\sqrt{8} q_{i}^{2}}$
but not much
better - see below:

$$
\begin{array}{ll}
\exists \alpha \text { and } C>0 & \text { sit. } \\
\left|\alpha-\frac{p}{q}\right|>\frac{c}{q^{2}} & \forall \frac{p}{q} \tag{143}
\end{array}
$$

"Pf" - visualization
y

no integer pis other tron $(8,0)$

- Coves hull of all $(p, q) \in \mathbb{Z}^{2}$ below on above $y=2 x$ in the hast queadren't
- A thread attacked at ∞, first alloy $y=\alpha x$, put a nail at \mathbb{Z}^{2} and pull the thread down/up
- the vertices of the hulls give the required sequence P_{i} / q_{i}
Details: [Arnold] - continued fractions

Direct of in the spirit of the Kronecker thin:

Pf well prove:

$$
\begin{aligned}
& \forall n \in \mathbb{N} \exists \quad 1 \leqslant q \leqslant n \quad \& \quad p: \\
& \left|\alpha-\frac{p}{q}\right| \leqslant \frac{1}{n q}\left(\leqslant \frac{1}{q^{2}} \Rightarrow\right. \text { the }
\end{aligned}
$$

- Partition $[0,1]$ into n intervals of length $1 / n$

- Look ot the $n+1$ pts

$$
\alpha, 2 \alpha, \ldots,(n+1) \alpha \bmod 1
$$

At lest two are in the some interval:

$$
\begin{aligned}
& \exists \quad 1 \leqslant l<k \leqslant n+1 \quad<, t . \\
& \quad|\underbrace{}_{\bmod -l \alpha}|<1 / n \\
& \Leftrightarrow \quad \exists p|k \alpha-l \alpha-\beta|<1 / n
\end{aligned}
$$

- Set $q=k \sim l \quad$ then

$$
\begin{aligned}
& |q \alpha-p|<1 / n \\
\Rightarrow \quad & \left|\alpha-\frac{p}{q}\right|<\frac{1}{n q}
\end{aligned}
$$

\rightarrow Denjoy ex us Niff. on π^{2}

$$
02 / 22-2022
$$

\rightarrow Recall the the from Lect. 13:

Thm $\forall \alpha \& \mathbb{Q} \exists \frac{p_{i}}{q_{i}}$ int many st.

$$
\left|\alpha-\frac{p_{i}}{q_{i}}\right|<\frac{1}{q_{i}^{2}} \rightarrow 0
$$

Q Con we do better then that?

$$
\begin{aligned}
& |\alpha-p / q|<\varepsilon / q^{2} \\
& |\alpha-p / q|<c / q^{2+\beta} \quad \text { on }
\end{aligned}
$$

It turns out: not in general and for very few α 's

Def $\alpha \phi$ (Q) is Diophantine if

$$
\begin{aligned}
& \quad \exists \beta \geqslant 0 \quad \text { s.t. } \\
& \exists c>0 \text { with }\left|\alpha-\frac{p}{q}\right| \geqslant \frac{c}{q^{2}+\beta} \quad \forall \frac{p}{q} \in \mathbb{Q}
\end{aligned}
$$

Denote the set of such α^{\prime} s by D_{β}

$$
D=\bigcup_{\beta \rightarrow 0} D_{\beta}, \quad D_{\beta_{1}} c D_{\beta_{2}} \leftarrow \beta_{1} \leqslant \beta_{2}
$$

Def $\alpha \& Q$ is Lionville f it is not Diophantive:

$$
\begin{aligned}
& \forall \beta \geqslant 0 \forall c>0 \exists \frac{p}{q \in \mathbb{Q} \text { s.t. }} \\
& \quad\left|\alpha-\frac{p}{q}\right|<\frac{\varepsilon 1}{q^{2}+\beta} \text { by playing with } \beta
\end{aligned}
$$

Nototion: $\mathcal{L}=\mathbb{R}, D$
In othr words: seriding $\beta \rightarrow \infty$ we obain a votioval approximetios of α covergiy to α fosier then any power of $1 / q$ o

Thm $\left(E_{x}\right) \cdot \forall \beta>0, D_{\beta}$ losa full meesme $\Rightarrow D=\bigcup_{\beta \geqslant 0} D_{\beta}$ lus a full measure $\approx \|$ - D_{1} is meager: coutoble union of clused nowse derse set
Thm \mathcal{L} is zero mearure and serond cort ∇ C small \& large $\begin{gathered}\nabla \\ 0\end{gathered}$

Pf-[Oxtaby]
Ex. $\alpha=\sum_{n=1}^{\infty} \frac{1}{10^{n!}}$ is Liouville

Thm Every $\alpha \in \mathscr{L}$ is transcendectal
Cor $\quad \alpha=\sum_{n=1}^{\infty} \frac{1}{10^{n!}}$ is troncendartal
Puebobly the simplest expl. trouseendectel nuhiber construction

Pf
α olgetraic of deg n : $f(\alpha)=0: \quad f=$ pol of olog n

Lemma $\alpha \in D_{n-2}$ no voots in \mathbb{N}
pf \int set

$$
M=\left[\max _{|\alpha-x| \leqslant 1}\left|f^{\prime}(x)\right|\right] \in N
$$

Claim $\quad \forall P / q$

$$
\left|\alpha-\frac{p}{q}\right| \geqslant \frac{1}{M q^{n}} \quad ; \quad C=\frac{1}{M}<1
$$

$$
\begin{aligned}
& \forall x \text { with }|x-\alpha| \leqslant 1: \\
& \left|f(x)-f_{11}^{\prime}(\alpha)\right| \leqslant M \cdot|x-\alpha| \leqslant M
\end{aligned}
$$

Tole $P / q=x$ con assume $\left|\frac{p}{q}-\alpha\right|<1$ (othonvise $\left|\frac{p}{q}-\alpha\right| \geqslant 1>\frac{p}{M q^{k}}$)
Then

$$
\begin{aligned}
&\left|f\left(\frac{p}{q}\right)\right| \leqslant M \cdot\left|\frac{p}{q}-\alpha\right| \\
& \Rightarrow|\underbrace{}_{\in N} q^{n} f\left(\frac{p}{q}\right)| \leqslant q^{n} \cdot M \cdot\left|\frac{p}{q}-\alpha\right| \\
& \Rightarrow \geqslant 1 \\
& \Rightarrow 1 \leqslant q^{n} M\left|\frac{p}{q}-\alpha\right| \\
& \Rightarrow\left|\frac{p}{q}-\alpha\right| \geqslant \frac{1}{M q^{n}}
\end{aligned}
$$

Hermanis theovem and
small denominetors

- Bode to diffeors of $S^{\prime \prime}$

Recall:

Thm (Denjoy)

$$
\begin{aligned}
& \varphi: S^{\prime} \xrightarrow{c^{2}} S^{\prime \prime}, P(\varphi) \notin Q \\
& \Rightarrow \varphi \sim R_{\alpha}: \exists h: \varphi=h^{\prime} R_{\infty}\left(h^{-1}\right)^{2}
\end{aligned}
$$

Q Con we improve Derjoy's thm in a different woy: make h surosth?
Not in seneral, but...

Thm (M. Hewmon, 1979, Yoccoz 19841)
Assume $\varphi!S^{\prime} \rightarrow S^{\prime}$ is a C^{∞}-ditteo and $\alpha=P(\varphi) \in D$

$$
\begin{aligned}
\Rightarrow & \varphi=h R_{\alpha} h^{-1} \text { wi*h } h: s^{\prime} \rightarrow s^{\prime} \\
& a \quad c \infty-d i f e o:
\end{aligned}
$$

Ruvk: builds wp on wozk of Arwol \& Moser
Deep \& difticult, much une previse zesult
what goes wrong when $\alpha \in \mathcal{L}$?

- Small Denominators

Idea: need to solve the equation

$$
\begin{aligned}
& f \circ R_{\alpha}-f=g<\text { given } \quad g \in C^{\infty} \text { \& nerusnaz } \\
& \int g(x) d x=0
\end{aligned}
$$

Want f to to exirt and be sufficiently smooth.
Ex. Show the a sol $f \in e^{\infty}$ exits $\uparrow \quad \forall g \in C^{\infty}$ when $\alpha \in D$

- Bet it $\alpha \in \mathcal{L}$ a sol might on might not exist aleprediy on 2

Example

$$
\begin{aligned}
& \pi^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2} \\
& (x, y) \\
& v=\alpha \partial_{x}-\partial_{y}
\end{aligned}
$$

minimal

all infapral curves are dense
when does the equation unknown

$$
\begin{equation*}
L_{v} f=g:-\alpha \frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}=g \tag{152}
\end{equation*}
$$

have a sol? How smooth
Ex $\int g d x d y=0 \longleftarrow$ necectary condition

Recall the set-up
Prop A Assume that $\alpha \in \infty$. Then 02/24-2022 $f \in C^{\infty}$ exits $\forall g$ with $\iint g=0$

- If $\alpha \in \mathscr{L}_{0}$ a sol might or wot exist, on boil to be smooth
Pf - method (small denominabous)

$$
g \in c^{\infty}\left(\pi^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}\right)
$$

Fourier series
"small clenominoter"

$$
\begin{aligned}
& g=\sum_{p, q} g_{p, q} e^{2 \pi i(q x+p y)} \\
& f=\sum_{p_{2} q} f_{p_{2} q} e^{2 \pi i(q x+p y)} \\
& L_{v} f=-\alpha \frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} \\
& =\underbrace{\Rightarrow g_{0,0}=\iint g}_{g_{p_{0} q} \sum_{p_{2} q} 2 \pi i(-q \alpha+p) f_{p, g} e^{e}} \\
& (p, q) \neq(0,0) \\
& \text { mut bo } 0 \\
& f_{p, q}=\frac{1}{2 \pi i} \frac{g_{p, q}}{p-q \alpha}=\frac{1}{2 \pi i} q\left(-\alpha+\frac{p}{q}\right)^{-1} g_{p, q}
\end{aligned}
$$

Analysis feet:

$$
u=\sum u_{p_{2} q} e^{2 \pi_{i}(q x+p y)} e C^{\infty}
$$

$\Leftrightarrow\left|u_{p, q}\right| \xrightarrow[(p-q) \rightarrow \infty]{ }$ footer than any pol:
$\forall a, b \in \mathbb{N}$

$$
\left|u_{p, q}\right| \cdot\left(|p|^{a}+|q|^{b}\right) \longrightarrow 0
$$

$\begin{aligned} & \cdot g \in C^{\infty} \Rightarrow \log _{p g^{\prime}} \mid \rightarrow 0 \text { faster than } \\ & \text { any pol }\end{aligned}$

- $\alpha \in D \quad\left|-\alpha+\frac{p}{q}\right|>\frac{c}{q^{2}+\beta}$ for some $C>0$

$$
\left.\left|f_{p_{2} q}\right|=\frac{1}{2 \pi} \lg _{p-q} \right\rvert\, \cdot C \cdot q^{3+\beta}
$$

also $\rightarrow 0$ foster flee any pol

$$
\Rightarrow f \in c^{\infty}
$$

- But if $\alpha \in \mathcal{L}$ and we ave unbelts with g we con have
$\left|f_{p q}\right| \rightarrow \infty$ or $\rightarrow 0$ brit slowly A sol may fail to exit.
\&4 Local Analysis of dynamical
systems - Very Briefly

Two classes of questions:

$$
\rightarrow \text { Asymptotic \& Legapunov stability }
$$

- of applied interest
\rightarrow Local normal forms, linearizobion, "classification", ate
- hugely impostent, somewhat similar to $\operatorname{DiA}\left(S^{\prime}\right)$
\rightarrow Two types of Dos:
- oliscrete - mops or germs
- continuous - flows \& focus on this
similar in taitive

Asymtotic \& Lyapunor stability
Setting: $M=$ smooth manifold

$$
v=\text { smooth } v . f \text {. }
$$

$$
v(p)=0
$$

Def v (on p) is asymstokically sieble of

if, 4^{t} is not detived for all $t \geqslant 0$ requine it to be Iutequal curves storkiz cluse to p converpe to p
\Rightarrow Con anume $M=\mathbb{R}^{k}, p=0$
o is defined on some ubd

$$
\text { of } p=0 \text {. }
$$

$\underline{R m h} \cdot v$ counot be vol presuzviry

$$
\operatorname{vol}\left(\varphi^{t}(v)\right)=\operatorname{vol}(v)<\operatorname{vol}(v)
$$

$\Rightarrow v$ counof be Hamithonian oe sypuplectie

$$
\begin{aligned}
& \text { Lunit convj! } \frac{\forall x \text { close to } p, \varphi^{t}(x) \underset{Z \rightarrow \infty}{\longrightarrow} p}{\exists \text { nitd Vop st. } \mid \forall V=\text { nhd of } P} \\
& \exists T>0 \text { s.t. } \varphi^{t \geqslant T}(v) \subset V
\end{aligned}
$$

Def P is Lyapunou stable if

- $\forall V=$ nbd of $P \exists V=n b l$ of P
sst. $\frac{\forall x \in V^{\quad} \varphi^{t}(x) \in V \quad \forall t \geqslant 0}{\varphi^{t}(U) c V}$
Trajectories starting elose to p remain close to p

Rephrasivy fon $p=0 \in \mathbb{R}^{2}$, o detinol neen $p=0$

- v is asyntofically shoble if

$$
\exists r>0 \text { s.t. }\|x\|<r
$$

$\Rightarrow \varphi^{t}(x)$ is defined fon all $t \geq 0$ anl

$$
y^{t}(x) \longrightarrow 0 \underbrace{\text { (uniformly in } x \text {) }}_{\text {automelor }}
$$

- o is Lyepunov stuble if

$$
\forall \varepsilon>0 \quad \exists \quad \delta>0 \quad \text { s.t. }
$$

$\forall\|x\|<\delta \quad \varphi^{t}(x)$ is defined for all $t \geqslant 0$ and $\left\|\varphi^{t}(x)\right\|<\varepsilon$
A.S. \Rightarrow L.S.

Exauples for \mathbb{R}^{2}

- $\dot{x}=-x$

$$
\dot{y}=-y
$$

Asyurt. stable chaye signs \Rightarrow "unstable"

- $\dot{x}^{6}=-y$

$$
\dot{y}=x
$$

L.S. but not A.S.

- $\dot{x}=-x$

Neithen L.S. (non A.S.) saddle

- $\dot{x}=-y-\varepsilon x \quad$ liven conb of $\dot{y}=x-\varepsilon y\}$ the forst two

A.S.

L.S. but not A.S.

"unstable"
- ete

Interporetation:

- $p: v(p)=0$ is an equir librium
- ouly "stable" equílibrian can be orbserved in practice

Ex.
on \mathbb{R}^{2} on $\mathbb{R} \times S^{\prime}=1 S^{\prime}$

y^{x}
loosiy evengy

$$
\begin{gathered}
(0,0) \quad \begin{array}{c}
\text { A.S. } \varepsilon>0 \\
\vdots \\
\ll
\end{array} \text { L.S } \varepsilon=0
\end{gathered}
$$

$$
\begin{gathered}
a \text { unnstible" } \\
\text { not A.S.onl.S. }
\end{gathered}
$$

Rank $\varepsilon<0$: punping in evergy

$$
\left.\begin{array}{l}
(\pi, 0) \text { neithr } \\
(0,0) \text { "unstable" }
\end{array}\right\} \begin{aligned}
& \text { neither is iserve }
\end{aligned}
$$

stability criteria

- Lyapunar functions

Sotting:

- v defined on a ubd of $0 \in \mathbb{R}^{2}, c^{\infty}$
- f: (nbd of 0) $\overrightarrow{e^{a}} \mathbb{R}, f(0)=0$

Def f is a Lyapunor function ton vif

- f has an isolahed min at o
- $L_{v} f(x=0)<0$ (or $\left.L_{v} f \leqslant 0\right)$

Thm Assume thent o has a Lyapunor fruction.

- $L_{\sigma} f \leqslant 0 \Rightarrow 0$ is L.S.
- $L_{v} \neq 0 \Rightarrow \theta$ is A.S.

Pf . $f\left(\varphi^{t}(x)\right)$ decressing $\left(\sin : 2_{v} f<0\right)$ $\begin{aligned} & \Rightarrow\{f \leqslant \varepsilon f \text { \& }\{f<\varepsilon\} \text { are invariant } \\ & \text { compact } \\ & \text { open }\end{aligned}$ $\Rightarrow \varphi^{t}(x)$ is delined tan all $t \geq 0$

- $\{f<\varepsilon\} \leftarrow a \sim b$ small ubds of 0 \Rightarrow L.S.

- Remaizes to prove

$$
\begin{aligned}
& L_{v} f<0 \\
& \text { away hon } 0
\end{aligned} \quad \Rightarrow \text { ASS. }
$$

$x \in$ small ind of 0
suffices to show:

$$
\begin{aligned}
\inf _{t} \geqslant 0
\end{aligned} \quad\left(y^{t}(x)\right)=0 \quad \text { Then } \varphi^{t}(x) \longrightarrow 0
$$

Assume not: $a=\inf _{t \geqslant 0} f\left(y^{t}(x)\right)>0$
Toke $z=a$ limit $p t$ of $\varphi^{z}(x)$ as $t \rightarrow \infty$
$z \in \omega(x)$,
Then $f(z)=a>0 \Rightarrow z \neq 0$

$$
2_{v} f(z)=b>0
$$

Claim $\exists \varepsilon>0$ and $\approx>0$ sit. $f\left(\varphi^{\approx}(y)\right) \leqslant a-\varepsilon$ $\forall y$ near z

Pf True a z. By continuity true neon z with smaller \&\& \sim

Tole $y=\varphi^{t}(x)$ near z. Then

$$
\begin{aligned}
& f\left(\varphi^{\tau}(y)\right)=f\left(\varphi^{t+r}(x)\right) \leqslant a-\varepsilon \\
\rightarrow & \leftarrow \text { wi th } a=\inf
\end{aligned}
$$

Rnk: 3 a similar eriterion fon difleos...

- Genevar lizes to integral curves - Her than equilibria: e.g. periods orbils.

Problem with Lyopunov functions: difficmet to find
Runk \exists L. function cuith Lot \Leftrightarrow A.S.
Thm: eveptially a neupsery orud suficient coudition

- Asymptotic stability via $\frac{\text { Lecture } 28}{\underline{03 / 01-2022}}$

$$
v(x)=A(x)+R(x)=A(x)+\ldots
$$

higher on les terns
Principle: the flow of A "approximohes"
the flow of v

$$
\varphi_{A}^{t}(x)=e^{A t} x
$$

Goal! stability criterion via A
Thm Re $\lambda<0$ for all eigenvalues of A $\Rightarrow 0$ is A.S.

Run - sufficient but not nececrevy $\operatorname{l.g} . v=-x^{2} \frac{\partial}{\partial x}-y^{2} \frac{\partial}{\partial y}$

- much moa involved fa L.S.

Ex. (Ex) $v(x)=A x<$ lime r v.f.

$$
\operatorname{Re} \lambda<0 \Rightarrow e^{A t} x \underset{t \rightarrow \infty}{\longrightarrow}
$$

obvious when A is diagonalizoble
Pf of the theorem

- For the soke of simplicity assume chat all $x \in \mathbb{R}$
- Goal: find a Lyapinov function
- linear charge of variables \Rightarrow

$$
A A=\left(\begin{array}{cc}
\lambda_{1} & \\
& \ddots \\
0 & \lambda_{n}
\end{array}\right) \text { with }|*|<\varepsilon
$$

arb small

- In other words

$$
\begin{aligned}
& \begin{aligned}
A & =\underbrace{\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
0 & \ddots & \lambda_{n}
\end{array}\right)}_{\Lambda}+\underbrace{\left(\begin{array}{ccc}
0 & \ddots \\
0 & \ddots \\
0 & \ddots
\end{array}\right)}_{\underline{P},}+\lambda_{i}<0
\end{aligned} \\
& \text { with }\|P\|<\varepsilon
\end{aligned}
$$

- Set $f(x)=\langle x, x\rangle=\sum x_{i}^{2}$

Note $\quad L_{k x} f=\left\langle\left(K+k^{\top}\right) x, x\right\rangle$ for any mohrix K

$$
\begin{aligned}
L_{v} f & =2\langle\Lambda x, x\rangle+\left\langle\left(P+P T_{x, x}+L_{R(x)} f\right.\right. \\
\rightarrow\langle\Lambda x, x\rangle & =\sum \lambda_{i}\left|x_{i}\right|^{2} \\
& \leqslant-\eta \cdot \frac{1}{2} \sum\left|x_{i}\right|^{2}=-\eta \cdot f \\
\text { wher } \quad \eta & =2 \text { min }\left|\lambda_{i}\right| \\
\left.\rightarrow 2\left(P_{+} P^{\top}\right)_{x, ~}, x\right\rangle & \leqslant 2\|P\| \cdot\langle x, x\rangle=2\|P\| \cdot f \\
& \leqslant 2 \varepsilon \cdot f \quad \text { avb. small }
\end{aligned}
$$

$\rightarrow R$ involves quadrotic and hiflur or der Levus $\quad R=\left(R_{1}, \ldots, R_{n}\right)$

$$
\begin{aligned}
& \quad \frac{\|R(x)\|}{\|x\|} \rightarrow 0 \text { as } x \rightarrow 0 \\
& L_{R(x)} f=2 \underbrace{\sum_{i} R_{i}(x) x_{i}}_{\text {enbic or hisher ondr }} \\
& \Rightarrow \frac{\|R(x)\|}{u x \|^{2}} \rightarrow 0 \quad x \rightarrow 0 \\
& \Rightarrow \forall \delta>0
\end{aligned}
$$

$$
\left\|L_{R(x)} f\right\| \leq 2 \delta \cdot f(x) \text { whan } x \approx 0
$$

$$
\text { - Lvf } L_{v}(-\eta+\varepsilon+\delta) f<0 \quad u \neq 0
$$

$$
\begin{equation*}
\text { when } \varepsilon+\delta<\lambda \tag{165}
\end{equation*}
$$

Con In the setting of the then $y^{t \geqslant 0}$ near 0 is top equivalent to the flow $x \mapsto e^{-t} x$
$\rightarrow \exists h:$ abd of $0 \rightarrow$ abd of 0 sit.

$$
h(\varphi t \geq 0(x))=e^{t} h(x)
$$

Pf. We have cowehructed a Lyopunou function which is a quadratic form:

$$
\left.f=\langle B x, B x\rangle=\left\langle B^{\top} B x, x\right\rangle\right\rangle 0
$$

change of voviobles

$$
\Rightarrow \quad\{f=\varepsilon\}=\text { ellipsoid } \cong \delta^{n-1}
$$

- Fix $\{f=\varepsilon\} \rightarrow S^{n-1} \quad$ con bake $\quad \psi=B$ or. The radial proj

$$
\text { set } h\left(\varphi^{t}(x)\right)=e^{-t} \psi(x)
$$

Difteo outside (1).
Q: ololyy h is not smooth? When?
EX - Show $h c^{\prime} \Rightarrow A=-I$

- Local normal forms and all that

Setting

- Vector fields $v(0)=0, v(x)=A x+\ldots$

Def. 0 is a non. deg zero of σ if $\operatorname{det}(A) \neq 0$: no eigenvalues $\lambda=0$
\Leftrightarrow Gropih of $v>$ zero section at 0

$$
\begin{gathered}
\text { grog }{ }^{4} \\
\text { of } v \\
\mathbb{R}^{k}
\end{gathered}
$$

Note
Caph of $A=D O$ $=$ Ter) graph of v

- Os hyperbolic

$$
\operatorname{Re} \lambda \neq 0
$$

Note: hyperbolic $\stackrel{*}{\Rightarrow}$ non-deg
Ex $\quad \operatorname{Re} \lambda<0 \Rightarrow$ hyperbolic

- Difteomozphasms

$$
\begin{aligned}
& \varphi: \text { und of } 0 \rightarrow \text { nhd of } 0 \\
& \varphi(0)=0, \quad \varphi(x)=P_{x}+\ldots \\
& P=D \varphi_{0}: T_{0} \mathbb{R}^{2} \rightarrow T_{0} \mathbb{R}^{2}
\end{aligned}
$$

Def $O O$ is a noundy fixed pt of φ if $\operatorname{det}(I-\lambda) \neq 0: \eta \neq 1$

- O is a hysperbolic fixed pt if I los no equvalues $|y|=1$

Note: hyperbolor \Rightarrow non-deg
Rund: asyuptotic stobith $\in \mid \underline{|z|<1 \forall\}}$ hyperholicity

Relation
Ex. $\quad v(x)=A x+\ldots \quad v(0)=0$
$\varphi=\varphi^{t}(x)=$ flow of v in time t

$$
\begin{aligned}
& \varphi(x)=P x+\cdots \quad \varphi(0)=0 \\
& \Rightarrow \quad P=e^{A t}: \eta=e^{\lambda t} \\
& \Rightarrow v \text { non-deg } \Rightarrow \lim _{\mathrm{m}} \Rightarrow \text { non-d.g } \\
& \Rightarrow \text { in gemal : } \lambda=2 \pi i
\end{aligned}
$$

o hyperbolic $\Rightarrow \underbrace{\text { ¢ hyperkolic }}_{\text {nou- ̈deg }}$
Rum $-E x$ - In 102 dout

- v noundeg at $0, w \stackrel{c^{\prime}}{\approx} v$
$\Rightarrow \quad w(p)=0$ for some p close to 0

Hint: use IFT

- φ nou-dy of $0, \psi \approx \frac{c^{\prime}}{\approx} \varphi$
$\Rightarrow \psi(p)=p$ for some p close to 0
 tlint: IFT
- Hartmon-Guobmon theorem $\frac{\text { Lecture 17 }}{03 / 03-2027}$

The top str of φ (or σ) near a hyperbolic pt is simple:
Ex: AS case

More ge enevally
Thm (Hartmon-Grobmon)
$\varphi(0)=0 \longleftarrow$ hyperboloc:

$$
P=D \varphi: \mathbb{R}^{n}=T_{0} \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}=T_{0} \mathbb{R}^{n}
$$

\Rightarrow locally neon 0 φ is top equiv to P
Move precisely: $\exists h:$ abd $0 \rightarrow n b d$ of 0 s.t. $\varphi(h(x))=P h(x)$ as long as everything is defined

Rok $P_{1} \& P_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ hoprevoloc
$P_{1} \& P_{2}$ are top conj
\Leftrightarrow same \# of eigenvalues $|\eta|<1: n_{-}$

$$
-\quad|\eta|>1 \quad n+
$$

Rmk Similauly fon vecbor lields (flows) bat need to look at orbital equivalunce: t is not preservel

Pf: KH , Arwold
Rnk The slable/uwstoble mouitolgs

$$
\begin{array}{ll}
W^{s}(0): & x: \quad \varphi^{k \rightarrow \infty}(x) \longrightarrow 0 \\
w^{n}(0): & x: \varphi^{k \rightarrow-\infty}(x) \longrightarrow 0
\end{array}
$$

ave actually smooth (Madamare-Perron thm)

- Move subtle aspects of local classification

$$
\begin{array}{ll}
v(0)=0, & v(x)=A x+\ldots \\
\varphi(0)=0, & \varphi(x)=P x+\ldots
\end{array}
$$

Q Linearization problem:
Con v show that v is smoothly equivalent to A ? Some for φ
New possibility: equivallonce in formal power series: Discuss in detail
$h \leftarrow$ for mol power series

$$
\begin{array}{ll}
h_{*} v=A \\
h \varphi^{t}=e^{A t} h^{\prime} & \text { as formal power series } \\
& \text { On holomorphre }
\end{array}
$$

Sometimes: but often not

- 3 obshuction even on the formal level. Resonances: liver relations

Egg. $\quad \lambda_{1}=2 \lambda_{2}$

$$
\lambda_{1}=2 \lambda_{1}+\lambda_{2} \Leftrightarrow\left(\lambda_{1}+\lambda_{2}=0\right)
$$

Bet wot: $2 \lambda_{1}=3 \lambda_{2}, \lambda_{6}=\lambda_{1}$ on $\lambda_{1}=\lambda_{2}$

Cf. If in oun $L_{v} f=g$ exangle $\alpha=\frac{p}{q} \in \mathbb{Q}$ we would heve problem solvip $\quad f_{p . q}=\frac{1}{2 n_{i}}-\frac{g_{p . q}}{-q_{\alpha p}+p}$
Similarly bere
Jhm (Poincové)
Assume कhat A has wo vesouances

$$
\Rightarrow \quad v(x)=A x+\ldots
$$

is foumally equivalut to A
Pf: Arwold

- Going formal usem enconntess furth problems akin to sueall denominators

Move details: Aunold

Pf of Poincave'is theorem

- Change of voriables (smaoth)

$$
y=h(x)=x+H(x)
$$

bomogeneans

$$
\begin{aligned}
& \text { pol of deg } r \geqslant 2 \\
& \text { cvectin volued) }
\end{aligned}
$$

cuectas volued)
trousforms $\dot{y}=A y$ into the equation

$$
\dot{x}=A x+\frac{v_{r}(x)}{\text { hom of deg } r}+\ldots .
$$

- whetis $v_{r}(x)$? $\quad h_{*}^{-1}(A)=\underbrace{A+v_{r}+\ldots}_{\text {vectro biclas }}$

$$
\begin{aligned}
& \dot{y}=A y \leadsto \dot{x}+\frac{\partial H}{\partial x} \cdot \dot{x}=A(x+H(x)) \\
& \text { mohrix valued pol, }=I \text { ot } x=0 \\
& \left(I+\frac{\partial H}{\partial x}\right) \dot{x}=A x+A H(x) \\
& \left(I+\frac{\partial H}{\partial x}\right)^{-1}=I-\frac{\partial H}{\partial x}+\ldots \quad E x:(I+B)^{-1}=I-B+\ldots \\
& \Rightarrow \quad \dot{x}=A_{x}+\underbrace{\left(\frac{\partial H}{\partial x} A x+A H C_{x i}\right)}_{v_{r}(x)}+\ldots .
\end{aligned}
$$

- In other wovels:

$$
h_{*}^{-1}(A)=A+v_{r} \quad+\ldots
$$

- Cousider $V_{r}=$ hou vector valued pol of $\operatorname{deg} r \geqslant 2$

$$
V_{r} \subset \mathbb{R}\left[x_{1}, \ldots, x_{4}\right] \otimes \mathbb{R}^{k}
$$

$$
\begin{aligned}
L_{A}: V_{r} & \rightarrow V_{r} \\
H & \longrightarrow L_{A} H=\frac{\partial H}{\partial x} A x+A H(x)
\end{aligned}
$$

- Claim Assume A is non-vesonent

$$
\Rightarrow L_{A} \text { is invertible }
$$

Pf o For the sobe of simplicity assume
A is lineanizble

- Chave to The basis of eijenvectors

$$
\begin{array}{ll}
e_{1}, \ldots, & e_{n} \\
\lambda_{1}, \ldots, & \lambda_{n}
\end{array}
$$

Bash in V_{r} : eigenvectors of L_{A} :

$$
\begin{aligned}
& f_{k, j}=x_{1}^{k_{1}} \ldots \cdot x_{n}^{k_{n}} \otimes e_{j} \quad \underbrace{k_{1}+\ldots+k_{n}}_{k}=n \geqslant 2 \\
& \frac{\operatorname{Cain}}{\operatorname{li}^{k}}=\left(\begin{array}{cc}
0 \\
x^{\dot{k}_{1}} & \\
x_{1}^{k_{n}} \\
0 &
\end{array}\right) \\
& L_{A f_{k j}}=\frac{\neq 0: \text { a resonorec }}{\left(-\sum k_{i} \lambda_{i}+\lambda_{j}\right) f_{ \pm j}} \\
& \text { Subclaím: }
\end{aligned}
$$

$$
\begin{array}{r}
\left(\frac{\partial f_{x_{i j}}}{\partial x}\right)_{i j}=k_{i} x_{1}^{k_{1}} \ldots x_{i-1}^{k_{i-1}} x_{n}^{k_{n}} \\
\text { arsuminy }
\end{array}
$$

$$
\text { assuminy } k_{i} \geq 1
$$

$$
\text { and } O \text { ofverwise }
$$

only one $\neq 0$ raw: jth

$$
\begin{aligned}
& A x=\lambda_{1} x_{1} e_{1}+\ldots+\lambda_{n} x_{n} e_{n}=\left(\begin{array}{c}
\lambda_{1}^{x_{1}} \\
\lambda_{n} \\
x_{n}
\end{array}\right) \\
& -\frac{\partial f_{k_{1} j}}{\partial x} A_{x}=-\left(\sum k_{i} \lambda_{i}\right) f_{k, j} \\
& A f_{k, j}=\lambda_{j} f_{k \cdot j} \\
& L_{A} f_{k, j}=\left(-\sum k_{i} \lambda_{i}+\lambda_{j}\right) f_{k j}
\end{aligned}
$$

- Finishiy thu proof: induchive proces

$$
\rightarrow \quad \dot{x}=A x+v_{2}(x)+\ldots
$$

find $h_{2}(x)^{2}=x+H_{2}(x)=y$ diffevent transfovinily $\quad \dot{y}=A y$ into

$$
A+v_{2}+\ldots=h_{2 *}^{-1}(A)
$$

$\Rightarrow h_{2}$ will telvn not the seme

$$
\dot{x}=A x+v_{2}(x)+\ldots
$$

into $\quad \dot{y}=A y+\sigma_{3}(y)$
\rightarrow coustnuet a sequenu of smooth local diffet's

$$
h_{2}, h_{3}, h_{4}, \ldots, h_{i}(x)=x+H_{i}(x)
$$

killing the rth onde tevm and modifying $\geqslant r+1$ th

$$
\operatorname{deg}^{\prime}=i
$$

\Rightarrow The couprosition

$$
\ldots \circ h_{4} \circ h_{3} \cdot h_{2}
$$

is deliued as a foumd power series and sends v to A

Runk At each finibe step the image is smooth
$h_{r} . \ldots \circ h_{2}$ gives an equivelence of $v \cdot \& \quad A \quad+$ terws of oodr $\geqslant r+1$

Ss Introduction to hyperbolicity
$\frac{\text { Lecture 18 }}{03 / 08-2022}$

- The horseshoe

Recall: Bernouilli shift

- $K=\mathbb{Z}_{2}^{\mathbb{Z}}=\left\{\right.$ bi-in f sequences $\left.a_{i} \in \mathbb{Z}_{2}\right\}$ with product top/mehror $=20,13$
Ex: $K \cong$ Cantor set
- $\sigma: K \rightarrow K=$ shit to the left

$$
\begin{gathered}
(\sigma \vec{a})=a_{2+1} \\
\leftarrow \leftarrow \leftarrow_{i} \leftarrow a_{-2} a_{1} a_{0} a_{1} a_{2} a_{3} \ldots
\end{gathered}
$$

Properties: Periodic points are dense

- \exists dense orbits (residual at
- engodor

Rom k: Different from other examples which are manifolds

Key fact: Smaless hovseshoe

$$
M=a \operatorname{sunface}\left(l-g \cdot R^{2} o n S^{2}\right)
$$

$\exists \varphi: M \longrightarrow M$ counpaetly supported and $j: K C M$ s.t. $\varphi \mid k=\sigma$

Coustraction

extend to the zoot of M
Δ

$$
\begin{aligned}
K= & \bigcap_{k=-\infty}^{\infty} \varphi^{k}(\Delta)=\operatorname{mox}_{\operatorname{inv}} \text { of subset } \Delta
\end{aligned}
$$

Claim: $\quad K \cong \mathbb{Z}_{2}^{\mathbb{Z}}$ and $\left.\varphi\right|_{k}=\sigma$.
Outline of the pf - syn bolos dynamics
Simplification

λ

$K \subset \Delta$ but not in $\operatorname{int}(\Delta) \ldots$

$$
\begin{aligned}
& \{x \mid x \in \Delta, \varphi(x) \in \Delta\}=\Delta_{0} \cup \Delta_{1} \\
& \underbrace{\left\{x \mid x \in \Delta, \varphi(x) \in \Delta, \varphi^{2}(x) \in \Delta\right\}} \\
& \left\{x \in \Delta_{0} \cup \Delta_{1} \mid \varphi(x) \in \Delta_{0} \cup \Delta_{1}\right\} \\
& =\Delta_{00} \cup \Delta_{0,} \cup \Delta_{10} \cup \Delta_{11}
\end{aligned}
$$

etc

$$
\begin{aligned}
& \left\{x \mid x \in \Delta, \varphi(x) \in \Delta, \ldots, \varphi^{n}(x) \in \Delta\right\} \\
& =2^{n-1} \text { narrow vertical strips } \\
& k^{+}=\left\{x \mid \varphi^{k}(x) \in \Delta \quad \forall k \in \mathbb{N}\right\} \\
& =\text { Condor set } \times[0,1]
\end{aligned}
$$

Coding trojechozies (syubolo dynamics)

$$
\begin{aligned}
& K \\
x & \longmapsto \mathbb{Z}_{2}^{N} \\
& a_{0} a_{1} o_{2} \cdots
\end{aligned}, a_{k} \in \mathbb{Z}_{2}
$$

Apply the some process to φ^{-1}

$$
\begin{aligned}
& \left\{x \in \Delta l, \varphi^{-1}(x) \in \Delta\right\}=\Pi_{0} \cup \Pi_{1} \\
& \begin{array}{l}
\left\{x \in \Delta \mid, \varphi^{-1}(x) \in \Delta, \varphi^{-2}(x) \in \Delta\right\} \\
\left.2 x \in \Pi_{0} \cup \Pi_{1} \mid \varphi^{-1}(x) \in \Pi_{0} \cup \Pi_{1}\right\}=\Pi_{00} \cup \Pi_{0,} \cup \Pi_{10} \cup \Pi_{u l} \\
\cdots \cdots
\end{array} \\
& K^{-}=\left\{x \mid \varphi^{-i}(x) \in \Delta \quad \forall k \in N^{\prime}\right\} \\
& =[0,1] \times \text { Cutor set }
\end{aligned}
$$

$$
K=K^{+} \cap K^{-}=\left\{x \in \Delta \mid \varphi^{k}(x) \in \Delta \forall k\right\}
$$

syubolic dynomics:
To summavize:

$$
\begin{aligned}
& K=\mathbb{Z}_{2}^{\mathbb{Z}} \\
& x \longmapsto a_{-1} a_{0} a_{1} a_{2} \ldots \in \mathbb{Z}_{2} \mathbb{Z}^{\prime} \quad \ldots \quad k \in \mathbb{Z} \\
& a_{k}=\quad \begin{array}{cc}
0 & 1
\end{array}, \quad \varphi^{k}(a) c \Delta_{1}
\end{aligned}
$$

- Then one shows thit this unap is a homeonosplisn
- $\varphi \mid K=\sigma$ by coustruction

Impozhent: houseshoes (on suith liki il) ave ubiquitous eparticularly in 2D) for c^{∞}-intinity generic $\varphi: M^{2} \unrhd$ $\exists K \subset M$ s.t.

$$
K \cong \mathbb{Z}_{2}^{2}
$$

$$
\begin{aligned}
& \text { n. } \\
& \text { nomitus } \\
& \text { spechin }
\end{aligned}
$$

(Katok, Le Colvez)
tlyperbolic mops e sets-definitions
Recall: another exauple of φ with the same properties an σ is $A: \pi^{n} \rightarrow \pi^{n}$ lineen $|\lambda| \neq 1$

- It teirins out that there propesties are esentially a consequence of a common feoture: hyperboticity

Del $\quad \varphi: M \rightarrow M$ is hyperbolic if \exists

- a splitting

$$
T M=E^{3} \oplus E^{M}: \quad T_{x} M=E_{x}^{s} \oplus E_{x}^{u}
$$

invariant undn DY

$$
\begin{aligned}
& 0 \quad 0<\eta<1 \text { \& ind of } x 8 v \\
& \left\|D \varphi_{x}(v)\right\| \leq \eta n v \| \\
& \left\|D \varphi_{x}(\sigma)\right\| \geqslant \eta^{-1}\|v\| \\
& F^{n} \varphi_{x} \\
& \| v \in E^{4}
\end{aligned}
$$

Shrinks vectors from E^{s} by $\quad \eta_{y}<1$ bure en
Exteuchs vectorn tran $E^{"}$ by Exteucs vectorn tron E^{4} by $(y / y>y$

Ex $\operatorname{AESL}(n, \mathbb{Z})$ with all $|\lambda| \neq 1$

$$
\begin{aligned}
& A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\
& \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n} \\
& \text { A: } \mathbb{R}^{n}=\mathbb{R}^{n} \mathbb{Z}^{n}
\end{aligned}
$$

$$
A^{-1} \in \operatorname{SL}(u, \mathbb{Z}) \Rightarrow \text { homes }
$$

E.g. $A=\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)$ Avnold's cat mop

Spliting:

$$
\begin{aligned}
& T \pi^{h}=\pi^{h} \times \mathbb{R}^{h} \\
& D A=A: \mathbb{R}^{h} \rightarrow \mathbb{R}^{h}
\end{aligned}
$$

$$
\begin{aligned}
& E^{u}=\operatorname{span}(\text { eigenveltors wiik }|\lambda|>1) \\
& E^{s}=\operatorname{span}(\text { eigenvecbors with }|\lambda|<1) \\
& \eta=\max _{|\lambda|<1}|\lambda|
\end{aligned}
$$

Rnk Hyperbolic mops ave very vare: essentially all exauples heve the same aly natuve as $y=A$

Hyperbole sets:
$\varphi: M \rightarrow M$; K closed invariant set
Def K is hyperbolic for φ if \exists

- a splitting

$$
T_{k} M=E^{3} \oplus E^{n} ; \quad T_{x} M=E_{x}^{S} \oplus E_{x}^{u} \quad x \in K
$$

invoinawt undo DY

$$
\begin{aligned}
& 0<\eta<1<\text { ind of } x, v \\
& \left\|D \varphi_{x}(v)\right\| \leqslant \eta\|v\| \quad \forall v \in E^{s} \\
& \left\|D \varphi_{x}(v)\right\| \geqslant \eta^{-1}\|v\|
\end{aligned} \quad \forall v \in E^{4}, x \in K
$$

Shrink vectors from E^{s} by $\eta<1$
Extends vectors tran E^{4} by $V_{\eta}>1$ but only for $x \in K$

Ex i) $\varphi: M \rightarrow M$ hyperbole: $K=M$
2) hyperbolic fixed an pentodic pto
3) Horseshoe?

Ruk similauly for flows bert now therer also one neutral divection

$$
T M=E^{s} \oplus E^{4} \oplus \underbrace{\operatorname{span}(v)}, \quad v \neq 0
$$

Ex- Geoderic oflows on surfaces of curvoture $<0 \quad(1 . g .=-1)$
Myperbolicity is one of the centiral notrous in modern dynomis!

$$
\text { hy perbolicity }+a b i t \text { mise } \Rightarrow \begin{aligned}
& \text { a lot } \\
& \text { of glyngints } \\
& \text { foteres }
\end{aligned}
$$

structural stebility of hyporbolir sets

Hyperbolicity \Rightarrow many importont dynamiss feo twies
Here we focus on str. stebilidy
Def $K=$ comyoAt invariaut set is locally $\mathrm{max}_{2} \mathrm{mal}$ it \exists VOJK such thut K is the maximal inv set in v :

$$
\begin{aligned}
& \varphi^{k}(x) \in U \forall k \in \mathbb{Z} \Rightarrow x \in k \\
\Leftrightarrow & k=\bigcap_{k \in \mathbb{Z}} \varphi^{k}(\vartheta)
\end{aligned}
$$

Thm K locally max \& hypeibolic
for φ
$\Rightarrow \varphi$ is str. stoble neon K :

$$
\begin{aligned}
\psi & \stackrel{c^{\prime}}{\approx} \varphi \Rightarrow h: n b d \text { of } K \rightarrow \text { nbd of } K \\
\text { s.t. } & \Rightarrow=h \varphi h^{-1}
\end{aligned}
$$

Ex $\quad k=a$ hypevbolic kixed pt Thm \Leftrightarrow Hartman-Grobman

$$
\begin{aligned}
& \Leftrightarrow \varphi(x)=x \quad \Rightarrow \psi \psi(y)=y \\
& \left.\left.\nabla \psi\right|_{y} \approx D \varphi\right|_{x} ^{I F=} \Rightarrow \text { hyperbolv }
\end{aligned}
$$

HG \quad ч $\sim D \psi \sim D \varphi \sim \varphi$

$$
\Rightarrow \varphi=\Delta \varphi+\ldots \operatorname{Thm} \Rightarrow \varphi \sim D \varphi: H G
$$

Ex $K=M$, φ hyperbolic
$A \Rightarrow \varphi$ is str. stoble
This is what we will prove Panticular case

Thim (Anosou)

$$
\varphi=A: \pi_{c^{\prime}}^{k} \rightarrow \pi^{k} \text { hyperbolo }
$$

$\psi \stackrel{c^{\prime}}{\approx} A \Rightarrow \psi$ is bp couj to A :

$$
\exists h \quad \psi=h A h^{-1}
$$

Pf. For the soke of simplicity $n=2: T^{n}=\pi^{2}: A$ is 2×2

- Wribe c'-small

$$
\varphi=A+R: \pi^{2} \longrightarrow \pi^{2} j
$$

$$
\mathbb{R}: \pi^{2} \rightarrow \mathbb{R}^{3}
$$

$$
h=i d++1 \quad \pi^{2} \longrightarrow \pi^{2} j
$$

$$
M: \pi^{2} \rightarrow \mathbb{R}^{2}
$$

$\pi^{2} \xrightarrow{\psi} \pi^{2}$ with be C^{0}-swab $\mathbb{R}^{2} \xrightarrow{\varphi} \mathbb{R}^{2}$ N not ${ }^{\text {net }}$
$h \uparrow G\{h$ lift

$$
p_{h} \imath^{2}
$$

$$
\begin{aligned}
& \pi^{2} \xrightarrow{A} \pi^{2} \\
& \psi=h A h^{-1} \\
& (A+R) \cdot(i d+H)=(i d+H) A \\
& (A+R) \cdot(x+H(x))=A x+H(A x) \\
& A x+A H(x)+R(x+H(x))=A x+H(A x) \\
& H(A x)-A M(x)=R(x+H(x))
\end{aligned}
$$

needed

This the equation on H we need to solve.

Letis sport with simpler equation

$$
\begin{aligned}
& H(A x)-A H(x)=R(x) \\
& \uparrow \text { unknown given }
\end{aligned}
$$

$L: H \longmapsto M O A-A O H$

$$
C^{0}\left(\pi^{2} ; R^{2}\right) \longrightarrow C^{0}\left(\pi^{2} ; \mid R^{2}\right)
$$ ir H

claim L is invertible
pf and $n L^{-1} n \leq \frac{1}{1-\lambda}<$ clos not
e_{1}, e_{2} eigenvectors of A
$\lambda_{1} \lambda_{2}$ eigenvalues

$$
\begin{aligned}
& H=H_{1} e_{1}+H_{2} e_{2} \\
& R=R_{1} e_{1}+R_{2} e_{2}
\end{aligned}
$$

$$
\lambda_{1}=\lambda_{2}^{-1}>1>\lambda_{2}=: \lambda
$$

$$
\begin{array}{r}
\Rightarrow \quad H_{1}(A x)-\lambda_{1} H_{1}(x)=R_{1}(x) \\
\\
H_{2}(A x)-\lambda_{2} H_{2}(x)=R_{2}(x)
\end{array}
$$

Consider $P: C^{0}\left(\pi^{2}\right) \rightarrow C^{0}\left(\pi^{2}\right)$
identity $\searrow \quad g \longmapsto g \circ A \quad\|P\|=1$

$$
\underbrace{\left(P-\lambda_{i} I\right)}_{\lambda_{i}\left(\lambda_{i}^{-1} P-I\right)} H_{i}=R_{i}
$$

when $i=1 \quad \lambda_{1}^{-1}=\lambda_{2}<1 \Rightarrow\left\|\lambda_{2} P\right\|<1$

$$
\Rightarrow\left(\lambda_{2} P-I\right)^{-1}=\underbrace{-\left(I+\lambda_{2} P+\lambda_{2}^{2} P^{2}+\ldots\right)}_{\text {eon verges }}
$$

when $i=2$

$$
\begin{aligned}
& P-\lambda_{2} I=P^{-1} \underbrace{\left(I-\lambda_{2} P\right)}_{\text {invirisible }} \quad\left\|\lambda_{2} P\right\|=\lambda_{2}<1 \\
\Rightarrow & L=\binom{P-\lambda_{1} I}{P-\lambda_{2} I} ~ \leftarrow \text { invertible }
\end{aligned}
$$

Bade to solving

$$
H \circ A-A \cdot H=R(I+H)
$$

Recall: Contraction mapping principle:
$\Phi: X \underset{\substack{\text { complimahrer }}}{c^{0}} X \quad d(\Phi(x), \Phi(y))<\eta d(x, y)$ couple, mater

$$
\text { spec, } \quad \pi \quad 0<\eta<1
$$

$$
\Rightarrow \quad \exists \text { fixed pt } x: \underline{\Phi}(x)=x
$$

Pf Take any $y \in X$ and set

$$
\begin{aligned}
& y_{k}=\Phi^{k}(y) \leftarrow \text { Gaudy sequel } \leftarrow E x \\
& y_{k} \longrightarrow x \leftarrow \text { Fixed pt } \\
& \Phi(x)=\lim \Phi\left(y_{k}\right) \\
& \quad \lim y_{k+1}=x
\end{aligned}
$$

Tole $\quad X=C^{0}\left(\pi^{2} ; \mathbb{R}^{2}\right)$ with sup-novm

$$
\begin{aligned}
& \psi: X \rightarrow X \\
& \psi(H)=R(I+H)
\end{aligned}
$$

Key equation:

$$
L(H)=\Psi(H)
$$

$\Leftrightarrow \quad H=L^{-1} \psi(H) \leftarrow$ fixed βt equobion
Claim $\Phi=L^{-1} \Psi: X \rightarrow X$ $\|$ is a contraction mapping
Tho
Pf. $\left\|L^{-1} \psi\left(H_{1}\right)-L^{-1} \psi\left(H_{0}\right)\right\| \leqslant\left\|L^{-1}\right\| \pi \psi\left(H_{1}\right)-\psi\left(H_{0}\right) \|$

- $\psi\left(H_{1}\right)-\psi\left(H_{0}\right)(x)$

$$
\begin{aligned}
& =R\left(x+H_{1}(x)\right)-R\left(x+H_{0}(x)\right)=? \quad x+\mu_{0}(x 0) \\
& =\int_{0}^{1} \frac{d}{d t} R(\underbrace{x+t H_{1}(x)+(1-t) R_{0}(x)}_{\gamma(t)}) d t \\
& \text { standevd } \\
& \begin{array}{l}
\text { Alternatively } \\
\text { one con }
\end{array} \\
& \text { one can men mean } \\
& \text { and woeful troele } \\
& \text { value thin to } \\
& \text { cup ponds) arse } \\
& R(\gamma(t))
\end{aligned}
$$

$$
\begin{aligned}
& \sup _{x}\left|\psi\left(H_{1}\right)-\psi\left(H_{0}\right)(x)\right| \\
& =\sup \left|R\left(x+H_{1}(x)\right)-R\left(x+H_{0}(x)\right)\right| \\
& \leqslant \sup _{x}^{x} \int_{0}^{1}|\frac{d}{d t} R(\underbrace{x+t H_{1}(x)+(1-t) R_{0}(x)}_{\gamma(t)})| d t \\
& \leqslant \sup _{x} \int_{0}^{1} D R_{\gamma(t)} \cdot\left(H_{1}(x)-H_{0}(x)\right) \mid d t \\
& \leqslant \sup \sup \|D R\| \cdot\left|M_{1}(x)-M_{0}(x)\right| \\
& \Rightarrow U \psi\left(H_{1}\right)-\psi\left(H_{0}\right)\|\leqslant\| R U_{C^{\prime}} \cdot\left\|H_{l}-H_{0}\right\| \\
& \Rightarrow\left\|\Phi\left(H_{1}\right)-\Phi\left(H_{0}\right)\right\| \leqslant \underbrace{\left\|L^{-1}\right\| \cdot\|R\|_{c}}_{\eta} c^{\prime} \cdot \| M_{1}-M_{0} \mid
\end{aligned}
$$

$\| R U_{C^{\prime}}$ small ewoufh $\Rightarrow \quad 0<\eta<1$
$\Rightarrow \Phi$ is a contraction mopping
Also meed to show that $h=i d+H$
is a homer. Not obvious bat not bond

- Ex mint use again the fact that A is hyperbolic

Ruck $R \quad e^{\prime}$-small \Rightarrow id $+R$ is a C^{\prime}-differ (Nuance) \leftarrow Inv. Function theorem

But $R C^{0}$-small $\ngtr i d t R$ is a homes

Rmk: A similan angemputt proves (Ix) the Hartmon - Grobman thm

$$
\rightarrow \text { The End }
$$

