- Denjoy's example

Lecture 23

$$
02 / 17-2022
$$

Aternotive: $\cdot \rho(\varphi) \in \mathbb{Q} \Leftrightarrow \varphi$ has a per. orbit

- $\rho(\varphi)=\alpha \notin Q \Leftrightarrow \varphi \sim R_{2}$
aloes not
\Rightarrow all orbits are derce
Q: The role of C^{2} ?
Thu (The Denjoy example)

$$
\exists \text { a } c^{\prime}-\operatorname{dif(és} \quad \varphi: S \rightarrow S_{s}^{\prime}
$$

with $p(\varphi)=\alpha \& \mathbb{Q}$ (Hence no per. orbit) and no debase orbits.

Rum. Con make y a $C^{1+\varepsilon}$ diffed but not a C^{2}-diffed (Denjoy Thu)

- Con woke y c^{∞}-sunosis but not a c^{∞}-differ (φ^{-1} is not $c^{1 \infty}$)

Idea of the construction (For $C^{0} \varphi$!

$$
\begin{aligned}
& \text { • } x_{n}=R_{\alpha}^{n}(x) \\
& \quad l_{n}>0 \\
& \sum_{n \in \mathbb{Z}} l_{n}<\infty \\
& \left|I_{n}\right|=l_{n} \\
& \\
& \varphi_{n}: I_{n} \rightarrow I_{n+1}
\end{aligned}
$$

- Cart S^{\prime} at each x_{4} and incest In bet \&'again. To be mise precise, coushrult $11 I_{n} \longrightarrow S^{\prime}$ so Fut

$$
\nabla: S^{\prime} \rightarrow S^{n}
$$

$I_{n} \rightarrow \mathrm{xen}$ otherwise $\mathrm{l}-1$

- Define $4: \oint^{\prime} \rightarrow \$^{\prime}$ by

$$
\begin{aligned}
& y(x)=\left\{\begin{array}{lll}
\varphi_{n}(x) & \text { if } x \in I_{2} \\
R_{\alpha}(x) & \text { if } x \& \| I_{n}
\end{array}\right. \\
& \Rightarrow \varphi \leqslant \text { a homes }
\end{aligned}
$$

- φ los wo pestodir orbits

$$
\Rightarrow p(\varphi) \& \mathbb{Q} \quad H W: \quad(\varphi)=\alpha
$$

4 lis no dene roils
if $x \in I_{n} \quad \varphi^{4}(x)$ never comes ba ct to I_{n}

* never hiss this interval if $x \& \| I_{n}, \varphi^{k}(x)$ never enters any I_{n}.
looks like a Can tr e

$$
\begin{aligned}
& \tilde{K}=S^{\prime} \backslash v \\
& v=11 \text { int }\left(I_{n}\right)
\end{aligned}
$$

Rna with just a bit mise cover of $l_{n} \& \varphi_{n}($ see $[K H 3)$ con woe φc^{\prime}

$$
\frac{d \varphi}{d x} \in C^{\bullet}
$$

Applicotion: v.f. ar π^{2}
Con \exists a C^{\prime} v.f. on π^{2} without zevoes, or closed arbits on deuse orbib.
Pf. Take $\varphi: S^{\prime} \xrightarrow{c^{\prime}} S^{\prime \prime}$ as in Denjoy's thm

- Form $M=S_{0}^{\prime} \times[0,1] /(x, 0) \sim\left(\varphi^{-1}(x), 1\right)$ the mopping torus
Ex: M is C^{\prime} suafece ond

$$
M \underset{c^{\prime}}{\cong} \pi^{2}
$$

- Dt us v.f. v on $M \cong \pi^{2}, c^{\prime}$ $\varphi=$ time- 1 flow of $v \neq 0$
- Ex: show thut y las no dence orbi's or periodie osbils
- Digrenion to umber theory:

Diophantine vs Lionville mun berg
$\alpha \gtreqless Q \ll$ olways
$\frac{p}{q} \in Q$ relatively prime
whet's the reference?
Q: How fast con one approximate α by rohional numbers

It turns out one shout compare $\left|\alpha-\frac{p}{q}\right|$ with q ?
Thm $\forall \propto \& \mathbb{Q} \exists \frac{p_{i}}{q_{i}}$ inf many st.

$$
\left|\alpha-\frac{P_{i}}{q_{i}}\right|<\frac{1}{q_{i}^{2}} \rightarrow 0
$$

Rail Con do $1 \alpha-P_{i} / q_{i}<\frac{1}{\sqrt{8} q_{i}^{2}}$
but not much
better - see below:

$$
\begin{array}{ll}
\exists \alpha \text { and } C>0 & \text { sit. } \\
\left|\alpha-\frac{p}{q}\right|>\frac{c}{q^{2}} & \forall \frac{p}{q} \tag{143}
\end{array}
$$

Math 235, Dynamical Systems
Winter 2022
Lecture 1
\rightarrow Go through basic info 01/04-2022

* No exams no how
* Problems steted in lectures $\}$
into them how much they take home *OH: by appointment

Plan:

- basic concepts and examples
- elements of ergodic theory
- maps of s^{\prime}, the Denjoy example
- local normal forms, Martman-Grobmon and local arealysis 7 , Dis
- hyperbolicity, horseshoes
- topological entropy
- Not a comprehensive course detail
- Examples are often non-trivial and very important
"Pf" - visualization
y

no integer pis other tron $(8,0)$
- Coves hull of all $(p, q) \in \mathbb{Z}^{2}$ below on above $y=2 x$ in the hast queadren't
- A thread attacked at ∞, first alloy $y=\alpha x$, put a nail at \mathbb{Z}^{2} and pull the thread down/up
- the vertices of the hulls give the required sequence P_{i} / q_{i}
Details: [Arnold] - continued fractions

Direct of in the spirit of the Kronecker thin:

Pf well prove:

$$
\begin{aligned}
& \forall n \in \mathbb{N} \exists \quad 1 \leqslant q \leqslant n \quad \& \quad p: \\
& \left|\alpha-\frac{p}{q}\right| \leqslant \frac{1}{n q}\left(\leqslant \frac{1}{q^{2}} \Rightarrow\right. \text { the }
\end{aligned}
$$

- Partition $[0,1]$ into n intervals of length $1 / n$

- Look ot the $n+1$ pts

$$
\alpha, 2 \alpha, \ldots,(n+1) \alpha \bmod 1
$$

At lest two are in the some interval:

$$
\begin{aligned}
& \exists \quad 1 \leqslant l<k \leqslant n+1 \quad<, t . \\
& \quad|\underbrace{}_{\bmod -l \alpha}|<1 / n \\
& \Leftrightarrow \quad \exists p|k \alpha-l \alpha-\beta|<1 / n
\end{aligned}
$$

- Set $q=k \sim l \quad$ then

$$
\begin{aligned}
& |q \alpha-p|<1 / n \\
\Rightarrow \quad & \left|\alpha-\frac{p}{q}\right|<\frac{1}{n q}
\end{aligned}
$$

\rightarrow Denjoy ex us Niff. on π^{2}

$$
02 / 22-2022
$$

\rightarrow Recall the the from Lect. 13:

Thm $\forall \alpha \& \mathbb{Q} \exists \frac{p_{i}}{q_{i}}$ int many st.

$$
\left|\alpha-\frac{p_{i}}{q_{i}}\right|<\frac{1}{q_{i}^{2}} \rightarrow 0
$$

Q Con we do better then that?

$$
\begin{aligned}
& |\alpha-p / q|<\varepsilon / q^{2} \\
& |\alpha-p / q|<c / q^{2+\beta} \quad \text { on }
\end{aligned}
$$

It turns out: not in general and for very few α 's

Def $\alpha \phi$ (Q) is Diophantine if

$$
\begin{aligned}
& \quad \exists \beta \geqslant 0 \quad \text { s.t. } \\
& \exists c>0 \text { with }\left|\alpha-\frac{p}{q}\right| \geqslant \frac{c}{q^{2}+\beta} \quad \forall \frac{p}{q} \in \mathbb{Q}
\end{aligned}
$$

Denote the set of such α^{\prime} s by D_{β}

$$
D=\bigcup_{\beta \rightarrow 0} D_{\beta}, \quad D_{\beta_{1}} c D_{\beta_{2}} \leftarrow \beta_{1} \leqslant \beta_{2}
$$

Def $\alpha \& Q$ is Lionville f it is not Diophantive:

$$
\begin{aligned}
& \forall \beta \geqslant 0 \forall c>0 \exists \frac{p}{q \in \mathbb{Q} \text { s.t. }} \\
& \quad\left|\alpha-\frac{p}{q}\right|<\frac{\varepsilon 1}{q^{2}+\beta} \text { by playing with } \beta
\end{aligned}
$$

Nototion: $\mathcal{L}=\mathbb{R}, D$
In othr words: seriding $\beta \rightarrow \infty$ we obain a votioval approximetios of α covergiy to α fosier then any power of $1 / q$ o

Thm $\left(E_{x}\right) \cdot \forall \beta>0, D_{\beta}$ losa full meesme $\Rightarrow D=\bigcup_{\beta \geqslant 0} D_{\beta}$ lus a full measure $\approx \|$ - D_{1} is meager: coutoble union of clused nowse derse set
Thm \mathcal{L} is zero mearure and serond cort ∇ C small \& large $\begin{gathered}\nabla \\ 0\end{gathered}$

Pf-[Oxtaby]
Ex. $\alpha=\sum_{n=1}^{\infty} \frac{1}{10^{n!}}$ is Liouville

Thm Every $\alpha \in \mathscr{L}$ is transcendectal
Cor $\quad \alpha=\sum_{n=1}^{\infty} \frac{1}{10^{n!}}$ is troncendartal
Puebobly the simplest expl. trouseendectel nuhiber construction

Pf
α olgetraic of deg n : $f(\alpha)=0: \quad f=$ pol of olog n

Lemma $\alpha \in D_{n-2}$ no voots in \mathbb{N}
pf \int set

$$
M=\left[\max _{|\alpha-x| \leqslant 1}\left|f^{\prime}(x)\right|\right] \in N
$$

Claim $\quad \forall P / q$

$$
\left|\alpha-\frac{p}{q}\right| \geqslant \frac{1}{M q^{n}} \quad ; \quad C=\frac{1}{M}<1
$$

$$
\begin{aligned}
& \forall x \text { with }|x-\alpha| \leqslant 1: \\
& \left|f(x)-f_{11}^{\prime}(\alpha)\right| \leqslant M \cdot|x-\alpha| \leqslant M
\end{aligned}
$$

Tole $P / q=x$ con assume $\left|\frac{p}{q}-\alpha\right|<1$ (othonvise $\left|\frac{p}{q}-\alpha\right| \geqslant 1>\frac{p}{M q^{k}}$)
Then

$$
\begin{aligned}
&\left|f\left(\frac{p}{q}\right)\right| \leqslant M \cdot\left|\frac{p}{q}-\alpha\right| \\
& \Rightarrow|\underbrace{}_{\in N} q^{n} f\left(\frac{p}{q}\right)| \leqslant q^{n} \cdot M \cdot\left|\frac{p}{q}-\alpha\right| \\
& \Rightarrow \geqslant 1 \\
& \Rightarrow 1 \leqslant q^{n} M\left|\frac{p}{q}-\alpha\right| \\
& \Rightarrow\left|\frac{p}{q}-\alpha\right| \geqslant \frac{1}{M q^{n}}
\end{aligned}
$$

Hermanis theovem and
small denominetors

- Bode to diffeors of $S^{\prime \prime}$

Recall:

Thm (Denjoy)

$$
\begin{aligned}
& \varphi: S^{\prime} \xrightarrow{c^{2}} S^{\prime \prime}, P(\varphi) \notin Q \\
& \Rightarrow \varphi \sim R_{\alpha}: \exists h: \varphi=h^{\prime} R_{\infty}\left(h^{-1}\right)^{2}
\end{aligned}
$$

Q Con we improve Derjoy's thm in a different woy: make h surosth?
Not in seneral, but...

Thm (M. Hewmon, 1979, Yoccoz 19841)
Assume $\varphi!S^{\prime} \rightarrow S^{\prime}$ is a C^{∞}-ditteo and $\alpha=P(\varphi) \in D$

$$
\begin{aligned}
\Rightarrow & \varphi=h R_{\alpha} h^{-1} \text { wi*h } h: s^{\prime} \rightarrow s^{\prime} \\
& a \quad c \infty-d i f e o:
\end{aligned}
$$

Ruvk: builds wp on wozk of Arwol \& Moser
Deep \& difticult, much une previse zesult
what goes wrong when $\alpha \in \mathcal{L}$?

- Small Denominators

Idea: need to solve the equation

$$
\begin{aligned}
& f \circ R_{\alpha}-f=g<\text { given } \quad g \in C^{\infty} \text { \& nerusnaz } \\
& \int g(x) d x=0
\end{aligned}
$$

Want f to to exirt and be sufficiently smooth.
Ex. Show the a sol $f \in e^{\infty}$ exits $\uparrow \quad \forall g \in C^{\infty}$ when $\alpha \in D$

- Bet it $\alpha \in \mathcal{L}$ a sol might on might not exist aleprediy on 2

Example

$$
\begin{aligned}
& \pi^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2} \\
& (x, y) \\
& v=\alpha \partial_{x}-\partial_{y}
\end{aligned}
$$

minimal

all infapral curves are dense
when does the equation unknown

$$
\begin{equation*}
L_{v} f=g:-\alpha \frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}=g \tag{152}
\end{equation*}
$$

have a sol? How smooth
Ex $\int g d x d y=0 \longleftarrow$ necectary condition

Recall the set-up
Prop A Assume that $\alpha \in \infty$. Then 02/24-2022 $f \in C^{\infty}$ exits $\forall g$ with $\iint g=0$

- If $\alpha \in \mathscr{L}_{0}$ a sol might or wot exist, on boil to be smooth
Pf - method (small denominabous)

$$
g \in c^{\infty}\left(\pi^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}\right)
$$

Fourier series
"small clenominoter"

$$
\begin{aligned}
& g=\sum_{p, q} g_{p, q} e^{2 \pi i(q x+p y)} \\
& f=\sum_{p_{2} q} f_{p_{2} q} e^{2 \pi i(q x+p y)} \\
& L_{v} f=-\alpha \frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} \\
& =\underbrace{\Rightarrow g_{0,0}=\iint g}_{g_{p_{0} q} \sum_{p_{2} q} 2 \pi i(-q \alpha+p) f_{p, g} e^{e}} \\
& (p, q) \neq(0,0) \\
& \text { mut bo } 0 \\
& f_{p, q}=\frac{1}{2 \pi i} \frac{g_{p, q}}{p-q \alpha}=\frac{1}{2 \pi i} q\left(-\alpha+\frac{p}{q}\right)^{-1} g_{p, q}
\end{aligned}
$$

Analysis feet:

$$
u=\sum u_{p_{2} q} e^{2 \pi_{i}(q x+p y)} e C^{\infty}
$$

$\Leftrightarrow\left|u_{p, q}\right| \xrightarrow[(p-q) \rightarrow \infty]{ }$ footer than any pol:
$\forall a, b \in \mathbb{N}$

$$
\left|u_{p, q}\right| \cdot\left(|p|^{a}+|q|^{b}\right) \longrightarrow 0
$$

$\begin{aligned} & \cdot g \in C^{\infty} \Rightarrow \log _{p g^{\prime}} \mid \rightarrow 0 \text { faster than } \\ & \text { any pol }\end{aligned}$

- $\alpha \in D \quad\left|-\alpha+\frac{p}{q}\right|>\frac{c}{q^{2}+\beta}$ for some $C>0$

$$
\left.\left|f_{p_{2} q}\right|=\frac{1}{2 \pi} \lg _{p-q} \right\rvert\, \cdot C \cdot q^{3+\beta}
$$

also $\rightarrow 0$ foster flee any pol

$$
\Rightarrow f \in c^{\infty}
$$

- But if $\alpha \in \mathcal{L}$ and we ave unbelts with g we con have
$\left|f_{p q}\right| \rightarrow \infty$ or $\rightarrow 0$ brit slowly A sol may fail to exit.
\&4 Local Analysis of dynamical
systems - Very Briefly

Two classes of questions:

$$
\rightarrow \text { Asymptotic \& Legapunov stability }
$$

- of applied interest
\rightarrow Local normal forms, linearizobion, "classification", ate
- hugely impostent, somewhat similar to $\operatorname{DiA}\left(S^{\prime}\right)$
\rightarrow Two types of Dos:
- oliscrete - mops or germs
- continuous - flows \& focus on this
similar in taitive

Asymtotic \& Lyapunor stability
Setting: $M=$ smooth manifold

$$
v=\text { smooth } v . f \text {. }
$$

$$
v(p)=0
$$

Def v (on p) is asymstokically sieble of

if, 4^{t} is not detived for all $t \geqslant 0$ requine it to be Iutequal curves storkiz cluse to p converpe to p
\Rightarrow Con anume $M=\mathbb{R}^{k}, p=0$
o is defined on some ubd

$$
\text { of } p=0 \text {. }
$$

$\underline{R m h} \cdot v$ counot be vol presuzviry

$$
\operatorname{vol}\left(\varphi^{t}(v)\right)=\operatorname{vol}(v)<\operatorname{vol}(v)
$$

$\Rightarrow v$ counof be Hamithonian oe sypuplectie

$$
\begin{aligned}
& \text { Lunit convj! } \frac{\forall x \text { close to } p, \varphi^{t}(x) \underset{Z \rightarrow \infty}{\longrightarrow} p}{\exists \text { nitd Vop st. } \mid \forall V=\text { nhd of } P} \\
& \exists T>0 \text { s.t. } \varphi^{t \geqslant T}(v) \subset V
\end{aligned}
$$

Def P is Lyapunou stable if

- $\forall V=$ nbd of $P \exists V=n b l$ of P
sst. $\frac{\forall x \in V^{\quad} \varphi^{t}(x) \in V \quad \forall t \geqslant 0}{\varphi^{t}(U) c V}$
Trajectories starting elose to p remain close to p

Rephrasivy fon $p=0 \in \mathbb{R}^{2}$, o detinol neen $p=0$

- v is asyntofically shoble if

$$
\exists r>0 \text { s.t. }\|x\|<r
$$

$\Rightarrow \varphi^{t}(x)$ is defined fon all $t \geq 0$ anl

$$
y^{t}(x) \longrightarrow 0 \underbrace{\text { (uniformly in } x \text {) }}_{\text {automelor }}
$$

- o is Lyepunov stuble if

$$
\forall \varepsilon>0 \quad \exists \quad \delta>0 \quad \text { s.t. }
$$

$\forall\|x\|<\delta \quad \varphi^{t}(x)$ is defined for all $t \geqslant 0$ and $\left\|\varphi^{t}(x)\right\|<\varepsilon$
A.S. \Rightarrow L.S.

Exauples for \mathbb{R}^{2}

- $\dot{x}=-x$

$$
\dot{y}=-y
$$

Asyurt. stable chaye signs \Rightarrow "unstable"

- $\dot{x}^{6}=-y$

$$
\dot{y}=x
$$

L.S. but not A.S.

- $\dot{x}=-x$

Neithen L.S. (non A.S.) saddle

- $\dot{x}=-y-\varepsilon x \quad$ liven conb of $\dot{y}=x-\varepsilon y\}$ the forst two

A.S.

L.S. but not A.S.

"unstable"
- ete

Interporetation:

- $p: v(p)=0$ is an equir librium
- ouly "stable" equílibrian can be orbserved in practice

Ex.
on \mathbb{R}^{2} on $\mathbb{R} \times S^{\prime}=1 S^{\prime}$

y^{x}
loosiy evengy

$$
\begin{gathered}
(0,0) \quad \begin{array}{c}
\text { A.S. } \varepsilon>0 \\
\vdots \\
\ll
\end{array} \text { L.S } \varepsilon=0
\end{gathered}
$$

$$
\begin{gathered}
a \text { unnstible" } \\
\text { not A.S.onl.S. }
\end{gathered}
$$

Rank $\varepsilon<0$: punping in evergy

$$
\left.\begin{array}{l}
(\pi, 0) \text { neithr } \\
(0,0) \text { "unstable" }
\end{array}\right\} \begin{aligned}
& \text { neither is iserve }
\end{aligned}
$$

stability criteria

- Lyapunar functions

Sotting:

- v defined on a ubd of $0 \in \mathbb{R}^{2}, c^{\infty}$
- f: (nbd of 0) $\overrightarrow{e^{a}} \mathbb{R}, f(0)=0$

Def f is a Lyapunor function ton vif

- f has an isolahed min at o
- $L_{v} f(x=0)<0$ (or $\left.L_{v} f \leqslant 0\right)$

Thm Assume thent o has a Lyapunor fruction.

- $L_{\sigma} f \leqslant 0 \Rightarrow 0$ is L.S.
- $L_{v} \neq 0 \Rightarrow \theta$ is A.S.

Pf . $f\left(\varphi^{t}(x)\right)$ decressing $\left(\sin : 2_{v} f<0\right)$ $\begin{aligned} & \Rightarrow\{f \leqslant \varepsilon f \text { \& }\{f<\varepsilon\} \text { are invariant } \\ & \text { compact } \\ & \text { open }\end{aligned}$ $\Rightarrow \varphi^{t}(x)$ is delined tan all $t \geq 0$

- $\{f<\varepsilon\} \leftarrow a \sim b$ small ubds of 0 \Rightarrow L.S.

- Remaizes to prove

$$
\begin{aligned}
& L_{v} f<0 \\
& \text { away hon } 0
\end{aligned} \quad \Rightarrow \text { ASS. }
$$

$x \in$ small ind of 0
suffices to show:

$$
\begin{aligned}
\inf _{t} \geqslant 0
\end{aligned} \quad\left(y^{t}(x)\right)=0 \quad \text { Then } \varphi^{t}(x) \longrightarrow 0
$$

Assume not: $a=\inf _{t \geqslant 0} f\left(y^{t}(x)\right)>0$
Toke $z=a$ limit $p t$ of $\varphi^{z}(x)$ as $t \rightarrow \infty$
$z \in \omega(x)$,
Then $f(z)=a>0 \Rightarrow z \neq 0$

$$
2_{v} f(z)=b>0
$$

Claim $\exists \varepsilon>0$ and $\approx>0$ sit. $f\left(\varphi^{\approx}(y)\right) \leqslant a-\varepsilon$ $\forall y$ near z

Pf True a z. By continuity true neon z with smaller \&\& \sim

Tole $y=\varphi^{t}(x)$ near z. Then

$$
\begin{aligned}
& f\left(\varphi^{\tau}(y)\right)=f\left(\varphi^{t+r}(x)\right) \leqslant a-\varepsilon \\
\rightarrow & \leftarrow \text { wi th } a=\inf
\end{aligned}
$$

Rnk: 3 a similar eriterion fon difleos...

- Genevar lizes to integral curves - Her than equilibria: e.g. periods orbils.

Problem with Lyopunov functions: difficmet to find
Runk \exists L. function cuith Lot \Leftrightarrow A.S.
Thm: eveptially a neupsery orud suficient coudition

