Go through, the The and pf again

Lecture 7
02/25-2022
$\frac{\text { A stronger ergodicity property: }}{\text { Mixing (Digression) }}$
Def $\varphi:(M, \mu) \equiv$ is mixing if
Roots in

$$
\begin{aligned}
& \forall A, B \text { (measurable) probability } \\
& \mu\left(\varphi^{-k}(A) \cap B\right) \underset{k \rightarrow \infty}{\rightarrow} \mu(A) \mu(B) \text { theory }
\end{aligned}
$$

Rok $\cdot \varphi^{-k}(A)=\left\{x \mid \varphi^{k}(x) \in A\right\}$ is alefined \& Obsevitions even when φ is not invertible

- Prefer to think as

$$
\mu\left(\varphi^{k}(A) \cap B\right) \rightarrow \mu(A) \mu(B)
$$

- $\mu(A) \neq 0, \mu(B) \neq 0$

- Topological counter past (top mixing) $\varphi^{-k}(U)_{n} V \neq \varnothing \quad \forall$ lave k
I. Mixing \Rightarrow Top Mixing when μ (open) >0
- Mixing \Rightarrow Ergodic

Pf. Ergodic $\Leftrightarrow \forall$ inv set A

$$
\underbrace{\mu(\underbrace{M, A}_{B})=0}_{\mu(A)=0 \text { or } \mu(A)=1}
$$

- φ mixing A invoviat: Need

$$
\begin{gathered}
B=M \backslash A \\
\underbrace{\varphi^{-k}(A)}_{A} \cap \underbrace{B}_{M L A}=\varnothing \\
0=\mu\left(\varphi^{-k}(A) \cap B\right)
\end{gathered}
$$

$A \& B$ never mix

Rusk. Similarly for flows

- other notions of mixing
(week, etc)...
- isometries ave not (top) mixing
\Rightarrow rotations of $S^{\prime \prime}$, troalations of π^{n}, linctlows an π^{k} ave not mixing
mixing \Rightarrow evgodieity
* unique ergodicity
- Hyperbolic $A: \pi^{2} \rightarrow \pi^{2}$
ave mixing [KH]

- Exauples continued:

Shift Tvausformetions

Setting:

- $\mathbb{Z}_{m}=\{0, \ldots, n-1\}$ an alphebet
- $M=\mathbb{Z}_{m}^{\mathbb{Z}}=\left\{x=\ldots x_{-1} x_{0} x_{1} x_{2} \ldots\right\}$
$=$ bi-inf ${ }^{-1}$ sequences
compeet metvic space
- $\varphi: M \rightarrow M$ shift to the left

$$
\begin{aligned}
& \varphi(x)_{i}=x_{i+1}, \text { homeo } \\
& x_{2} x_{-1} x_{0} x_{1} x_{2} x_{3} \ldots
\end{aligned}
$$

- Rumb \mathbb{Z}_{n} a gp $\Rightarrow M=\mathbb{Z}_{m}^{\mathbb{Z}}$ is a conpact top. gp φ is a gp homomorphism
- Inv measures. (Bervoulli measuzes)

$$
\text { - Fix } \quad 0<p_{i}<1 \quad i=0, \ldots, n-1
$$

$$
\sum P_{i}=1 \quad \text { puobobility }
$$ of $a_{i} \in \mathbb{Z}_{n}$

- Cylinders

$$
\begin{aligned}
I & =\left(i_{1}, \ldots, i_{s}\right) \quad \text { multiindex } \\
Y & =\left(a_{1}, \ldots, a_{s}\right) \in \mathbb{Z}_{m}^{3} \\
C_{Y}^{I} & =\left\{x\left|x_{i_{j}}=a_{i_{j}}\right| \forall i_{j} \in I\right\}
\end{aligned}
$$

These also form
$\ldots x_{-1} x_{0} x_{1} \ldots x_{i} \ldots$ a base of the
11 top of \mathbb{z}_{m}
Del

$$
a_{i j}
$$

$$
\mu\left(C_{Y}^{I}\right)=P_{a_{1}} \cdot P_{a_{2}} \ldots \cdot P_{a_{s}}
$$

$$
P_{i}=\mu\left(a_{i}\right)
$$

$$
\begin{aligned}
& \text { is फ̈'k produot } \\
& \text { meastre }
\end{aligned}
$$ meashre

\Rightarrow Extend to a meesue
$\Rightarrow a$ e irvariont measue μ or M (Probability, Bovel)

Ex $P_{i}=\frac{1}{n}$: all a_{i} hove the some prob \Rightarrow Hhe Haan measue on $\mathbb{Z}_{n}^{\mathbb{Z}}$ CinvariaA under rifit or left translatious, μ (open) >0

Recall top properties of φ :

- dense periodic pb= periodic seq x_{i} $p(k)=n^{k} \leftarrow \#$ of pen pts of per k
- top transitive: \exists a dense orbit

On the measure theory side:
Thu φ is mixing for μ

$$
\Rightarrow
$$

Con φ is ergodic 8 top mixing
Reeks: φ is not ciniquely ergodic
epee. artibs or different $\left\{p_{i}\right\}$) and not minimal

- similarity with hyperbolic

$$
A: \pi^{k} \rightarrow \pi^{k}
$$

Pf [KM]

- Observations: enough to check mixing when A \& B are cylinders

$$
\begin{array}{llll}
\ldots & x_{i_{1}} \ldots x_{j} \ldots \ldots x_{i_{2}} \ldots \ldots \\
n_{1} & a_{i_{1}} & \ldots & \\
& & a_{i_{2}-\cdots}=r
\end{array}
$$

Need $\mu\left(\varphi^{-k}\left(C_{Y}^{I}\right) \cap C_{X}^{J}\right) \rightarrow \mu\left(C_{Y}^{I}\right) \mu\left(C_{X}^{J}\right)$ for any two such cylinders different length

$$
\begin{aligned}
& \text { - Note } \cdot \varphi^{-k}\left(C_{Y}^{I}\right)=e_{Y}^{I+k 3} \\
& I+k_{0}\left(i_{1}+k_{,}, i_{s}+k\right) \\
& \Rightarrow V I \& J \\
& \varphi^{-k}\left(C_{\psi}^{I}\right)=C_{Y}^{I+k} \quad \begin{array}{l}
\text { disjoint } \\
\end{array} \begin{array}{l}
\text { from } J \\
\text { wham } k \text { is }
\end{array} \\
& \text { when } k \text { is large }
\end{aligned}
$$

- Recall

$$
Y=\left(a_{1}, \ldots, a_{s}\right)
$$

$$
\mu\left(c_{y}^{I}\right)=P_{a_{1}} \ldots P_{a_{s}}
$$

$$
\begin{array}{cl}
\text { • } L_{\cap J}=\varnothing & Y=\left(a_{1} \ldots a_{s}\right) \\
C_{Y}^{L} \cap C_{X}^{J}=C_{Y \cup X}^{L \cup J} & X=\left(b_{\left.1, \ldots, b_{r}\right)}\right. \\
\Rightarrow \mu\left(C_{Y}^{L} \cap C_{I}^{J}\right)=\mu\left(C_{Y}^{L}\right) \cdot \mu\left(C_{X}^{J} J\right.
\end{array}
$$

$$
a_{1} \ldots a_{s} b_{1} \ldots b_{r} \quad a_{1}-a_{s} \quad b_{1} \ldots b_{n}
$$

- $L=I+k \quad k$ is large disjoint ham J

$$
\begin{array}{ll}
& C_{Y}^{L}=C_{Y}^{ \pm+k}=\varphi^{-k}\left(C_{Y}^{I}\right) \text { disjoint } \\
\Rightarrow & \varphi^{-k}\left(C_{\varphi}^{I}\right) \cap C_{x}^{J}=C_{Y}^{(L)} \cap C_{x}^{(J)} \\
\Rightarrow & \mu\left(\varphi^{-k}\left(C_{Y}^{I}\right) \cap C_{X}^{J}\right)=\mu\left(\varphi^{-k}\left(C_{Y}^{I}\right)\right) \mu\left(C_{x}^{J}\right) \\
\Rightarrow & \text { mixing }
\end{array}
$$

Probabilistic Auden porctotyen

- $\mathbb{Z}_{2}=\{0,1\} ; P_{0}=P_{1}=1 / 2$ unbiased
- $M=b_{i}-i n f$ sequences of $0 \& 1$ is
- each sequence
= sequence of coin tosses, an experiment

$$
0=\text { heads }
$$

$$
1=\text { tails }
$$

$$
\int a \text { trial }
$$

- $I=\{0, \ldots, m\}$
$y=\left\{b_{0}, \ldots b_{m}\right\} \quad b_{i}=0$ or 1
$C_{Y}^{I}=$ event: the first mat tosses give outcome $Y: \mu\left(C_{Y}^{I}\right)=\frac{1}{2^{m+1}}$

$$
\varphi^{-k}\left(c_{Y}^{I}\right)=c_{Y}^{k+I}
$$

$=$ event: the tones $k, \ldots, k+m$ give oast come Y

$$
\lim _{k \rightarrow \infty} \frac{1}{k}\left\{0 \leqslant i \leq k-1 \mid \varphi^{k}(x) \in e_{Y}^{I}\right\}
$$

- frequency with which the sequence Y occurs in x

Ergodicity \Rightarrow for almost all trials x

Ex. Interpret mixing in terms of conditional probability.

$$
\frac{\text { Leeture } 8}{01 / 27-2022}
$$

- Existend of invaviant measerzes
M coupaet uevisie space (seproble) $\varphi: M \rightarrow M$ horneo on just C^{0} we love used:
Fad: φ has an invoviaut (ergodic) measure.

Goal: jushity this
Thm (Krylov - Bogolubov)
M compact, $\varphi: M \xrightarrow{C^{0}} M$

$$
\Rightarrow \exists \text { an invariaut }
$$

Borel probobility measuze

Preliminaries: $\quad M$ as above

- $C^{\circ}(M)=$ Bonach space with

$$
u f u=\sup _{x \in M}|f(x)|
$$

- Dual sfacs:

$$
C^{0}(M)^{*}=\left\{\Phi: C^{0}(M) \rightarrow \mathbb{R} \mid \text { bounded }\right\}
$$

Thm (Riesz Representation Thmi) $C^{0}(M)^{*}=$ the space of finite Rovel measues ju (not necessarily pos)

$$
\Phi(f)=\int_{M} f d \mu
$$

Ruh $\cdot \mu=\mu_{+}-\mu_{-}<$pos. meornes

- Ipos: $f \geqslant 0 \Rightarrow \Phi(f) \geqslant 0$
$\Rightarrow \mu$ is pos
- $\Phi(1)=1 \Rightarrow \mu$ is prabability: $\int \mu=1$
- $\Phi(f \circ \varphi)=\Phi(f) \quad \forall f$ $\Leftrightarrow \mu$ is φ invowiant
$p f$
Ialea: For $x \in M$ set

$$
\mu_{x}(t)=\lim _{x \rightarrow \infty} \frac{1}{x}\left\{0,<i x-1 / \varphi^{i}(x) \in V\right\}
$$

as in Biakhoff ergodic theorem, on

$$
\Phi_{x}(f)=\lim _{k \rightarrow \infty} \frac{1}{k} \sum_{i=0}^{k-1} f\left(\varphi^{i}(x)\right)
$$

and olefine μ_{x} by

$$
\Phi_{x}(f)=\int f d \mu_{x}
$$

Then μ_{x} is on invoriaet probality measiue assuring thet the limeits exist
$E X: x$ is k-periodic

$$
\begin{aligned}
& x=x_{0}, x_{1}=\varphi(x), \ldots x_{i}=\varphi^{i}(x), x_{k}=\varphi^{k}(x)=x_{0} \\
& \varphi^{k}(x)=x=x_{0}
\end{aligned}
$$

$\Rightarrow \mu_{x}=\frac{1}{k} \sum \delta_{x_{i}} \quad$ invariaut Brubability merne

Implemento tion

- Let $f_{j} \in C^{0}(M), j=1,2, \ldots$
be a countable collection cleuse in C^{0} (with. espect to the sup-norm.)
- Picle se and cousiden
$\left.a_{k}^{j}=\frac{1}{k} \sum_{i=0}^{k-1} f_{j}\left(\varphi^{i} c x\right)\right) \leftarrow$ bowndel \forall_{j} -
$\Rightarrow k_{s}(1) \underset{s \rightarrow \infty}{\rightarrow \infty} \quad a_{k_{s}(1)}^{1}$ couverges
$\Rightarrow k_{s}(1)$ coutains a subsequence
$k_{s}(2) \underset{s \rightarrow \infty}{\longrightarrow} \infty \quad a_{k_{s}^{2}}^{2}(2)$ also canverfes
Set $k_{s}=k_{s}(s)$ subsequeuce in all of them

$$
\Rightarrow a_{k_{s}}^{j} \rightarrow a_{k_{s} \rightarrow \infty}^{j} \quad \forall j
$$

$\exists \lim _{k_{s} \rightarrow a} \frac{1}{k_{s}} \sum_{i=0}^{k_{s}-1} f_{j}\left(\varphi^{i}(x)\right)=a^{j} \quad \forall j$

$$
\sum^{\Rightarrow} \prod_{k_{s} \rightarrow \infty} \lim _{s} \frac{1}{k_{s}} \sum_{i=0}^{k_{s}-1} f\left(\varphi^{i}(x)\right)=: \Phi_{2}(f)
$$

$\left\{f_{j}\right\}$ dense in $C^{0}(M)$
Riesz Representotion theovem

$$
\begin{aligned}
& \Rightarrow \exists \mu_{x} \text { s.t. } \\
& \Phi_{x}(f)=\int f d \mu_{x}
\end{aligned}
$$

check (Ex):

- $f \geqslant 0 \Rightarrow \Phi_{x}(f) \geqslant 0$ clear
- $\Phi_{x}(1)=1$
- $\left.\Phi_{r}(f \circ \varphi)=\Phi_{x}(f)\right\}$ colmbation
$\Rightarrow \mu_{2}$ is pasilive, prodoability and invariant

Rmk $\operatorname{supp} \mu_{x} c \overline{\theta(x)}$
$\frac{\text { Bmh }}{\left(E_{x}\right)}$ A short cut with moze
functional analysis:
Set

$$
\begin{aligned}
\Phi_{2}^{(k)}(f) & :=\frac{1}{k} \sum_{i=0}^{k-1} f\left(\varphi^{i}(x)\right) \\
& =\left(\frac{1}{k} \sum_{i=0}^{k-1} \delta_{\varphi i(2)}\right)(f)
\end{aligned}
$$

$$
\begin{aligned}
& \left|\Phi^{(x)}(f)\right| \leqslant\|f\| \\
& \Rightarrow \mid \Phi^{(x)} \| \leqslant 1:
\end{aligned}
$$

$$
\Phi_{x}^{(x)} \in \underbrace{\text { unit ball in } C^{0}(M)^{*}}_{\text {weok }^{*} \text { compect } \text { (sequeutially) }}
$$

 pt-wise conversing sibisequeuce: Alaoglu's

$$
\Phi_{x}^{x_{i}}(f) \longrightarrow \Phi_{x}(f) \forall f
$$

thm

This is enentially the def of Ix
Now finirn the prt as above. a
Rnok Con alsu teke

$$
\lim \frac{1}{2 k+1} \sum_{i=-k}^{k} f\left(\varphi^{i}(x)\right)
$$

when φ is inver tible

Rah How often does the lime exist?

Answer: for any φ-inv μ
the limit exist for $\mu-a . a$. $x \quad \forall f$
Hint: combine the Bizlhot ergodic theorem with the pot of Kry2ov - Bogolubov the

- How do ergodic measures enter this picture?

Notation: $\mu_{\varphi}=\{\varphi$-inv. prob. Bowel Measmes $\}$

$$
\begin{aligned}
& \mu=\mu_{\varphi} c C^{0}(M)^{*} \\
& \mu \longmapsto \Phi_{\mu}:=\left(f \longmapsto \int_{M} f d \mu\right)
\end{aligned}
$$

- The image is in the unit sphere $n \Phi \|=1$ and weak* coupoct \& $\Phi_{\mu}(1)=1$
- μ_{φ} is corves:

$$
\begin{array}{r}
0 \leqslant t \leqslant 1, \mu_{\mathscr{m}}=(1-t) \mu_{0}+t \mu_{2} \\
\tilde{\mu}_{\varphi} \leqslant \mu_{\varphi} \quad \mu_{\varphi}
\end{array}
$$

Def μ is an extreme pt of μ if for any encl deconpoosinar a. id $t=0 \quad \circ \quad t=1$

Notation: Ext (h)

Cor $\underbrace{\operatorname{Ext}}_{\operatorname{ext} p b}(\mu) \neq$
Rmk In general: closue

In geveral, whan dim $=\infty$, even the foct tuat

$$
E \times t(\mu) \neq \varnothing
$$

is not abvions
T Thn $\left\{\begin{array}{l}\text { Ergodic } \\ \text { meosura }\end{array}\right\}=\left\{\begin{array}{c}\text { Extrewe } \\ \text { of prhy }\end{array}\right\}$
Pf
"د" $\mu \in M_{p}$, not evgodic:

$$
\exists A \text { with } 0<\mu(A)<1
$$

Set $\left.\mu_{X}(Y)=\frac{\mu(X, Y)}{\mu(X)}\right\} \begin{aligned} & \text { restriction to } X \\ & \text { meative }\end{aligned}$

$$
\begin{aligned}
& \mu_{0}=\mu_{A}, \mu_{1}=\mu_{M \backslash A} \\
\Rightarrow \quad & \mu=\mu(A) \mu_{A}+(1-\mu(A)) \mu_{M, A}
\end{aligned}
$$

$\Rightarrow \mu$ is not an extreme pt
"c" Idea • $\mu_{0}, \mu_{1}=$ estreme pts. \rightarrow enoull $(\Rightarrow$ evgodre)
to hove fro extr

- $\mu_{0} \neq \mu_{1}: \exists A \quad \mu_{0}(A) \neq \mu_{1}(A)$

Form:

$$
\mu=(1-t) \mu_{0}+t \mu_{1} \text { not oxtreme: } t \neq 0,1
$$

Wout to show not ergodir
(A pasticuler cose)

Assume it is Bizkhoff.

$$
\begin{aligned}
& \frac{1}{k} \sum_{i=0}^{k-1} x_{A}\left(\varphi^{i}(x)\right) \xrightarrow{\bullet} \mu(A)=(1-t) \mu_{0}(A)+t \mu_{1}(A) \\
& \quad \Rightarrow \mu_{0}(A)=\mu_{1}(A)
\end{aligned}
$$

A catch: -need x to "a.a." for $\mu_{0} \& \mu_{1}$

- night not essiot
- Bit then supp μ_{0} n supp $\mu_{i}=\varnothing$ and pu is again not ergodic
- A more serious problem: not every nou-extreme pt con be derounposed as $\mu^{\prime}=(1-t) \mu_{0}+t \mu_{1}$
- Not lítevoluy bet...

Need some functional andysis: choquet's them

Con Every $\varphi: M \rightarrow M$ hes an ergodic measene

Con The following deft of unique engodicity ave equivalent:

- ergodic and an ergodic measure is unique
- ergodic and inv measure is unique.

How common is evgodicity?
Setting:

- M a coupact monifdd (berlops uith boundary or corners)
- $\mu=$ smooth measine (Lebesgue)
E.g. $M=$ clored ball or $I^{n}=$ cube
- $H=\{y: M \rightarrow M \mid \mu$-pres honeo $\}$ with sup-topology:

$$
d(\varphi, \psi)=\sup _{x \in M}(\varphi(x), \psi(x))
$$

H has the Baive propesty:
a coundeble inbersectioin of open a derse sebs is clerse
I a vesidual set: deue $\in \delta$ or wore genevally containis a desse Gs
$T h m(O x t o b y$ - Slam)
Ergodic φ form a residual subset jot H, \quad dim ≥ 2

$$
\begin{aligned}
& \text { Ex. Show nut noA-true } \\
& \text { when dim }=1
\end{aligned}
$$

Con Top transitive 4 (i.e. with a oles orbit) for a residual subset of H

Rue - Nothing like chat is true for c^{α}-differs bores g!
RAM

At least when $\operatorname{dim} M=2$ on in the Ham case or...
e. .

- Cl or c^{k} - more subtle

$$
\begin{aligned}
& \text { Avila-Crovisier-Wilkinsow } \\
& \text { Av Xiv } 1408.4252
\end{aligned}
$$

- Not easy to construct $\varphi: D^{2} \rightarrow D^{2}$ with a dense obit

Direct pf of Cor -Outlive
Following [oxtoby]

- $M=$ square $[0,1] \times[0,1]$
$\mu=$ Lebesgue mesne
$\{4: M \rightarrow M \mu$-pres. home $\}=H$
- $\left\{U_{i}\right\}=$ collection of open squares in M with rational vertices
 (top lase)

$$
E_{i j}=\left\{\varphi \mid \exists k \geqslant 1: \varphi^{-k}\left(v_{j}\right)_{\cap} v_{i} \neq \varnothing\right\}
$$

clear key pt

Claim $\forall i . j E_{i j}$ is open and dense

Tho \leftarrow Claim:

$$
\bigcap_{i . j} E_{i . j}=: \underset{\substack{\psi}}{E} \leftarrow \text { residual }
$$

$G_{j}=\bigcup_{k=1}^{\infty} \varphi^{-k}\left(U_{j}\right)$ is open \& dense:

$$
U_{i} \cap \bigcup_{k=1}^{\infty} \varphi^{-k}\left(v_{j}\right) \neq \phi<\varphi \in E
$$

Baire: $G=\cap G_{j}$ is residual in M

$$
\begin{aligned}
& \Rightarrow G \neq \varnothing \\
& \forall j: \quad x \in \bigcup_{k=1}^{\infty} \varphi^{-k}\left(\tau_{j}\right) \\
\Rightarrow & \exists k: \quad \varphi^{k}(x) \in U_{j}
\end{aligned}
$$

$\Rightarrow \theta(x)$ is dense.
Ruin we love shown flat for a residual set of φ 's the set of x will $O(x)$ dense is residual.

Idea of the pf of the Claim

- Given is j and φ need to find an arbitrarily small ψ and $p \in v_{i}$ sit. $(\psi \varphi)^{k}(p) U_{j}$ for some k $\Rightarrow \varphi \psi \in E_{i j \&} \psi \varphi \approx \varphi$
- Can assume out periodic pts of φ form a meager set
- such φ 's form a residual set

Pick $p \in U_{i} \& \quad q \in U_{j}$ and "connect" them $b_{y} a^{J}$ seg.disj oubih $\left\{x_{i} \ldots, \varphi^{n_{i}}\left(x_{i}\right)\right\}$

$$
q=x_{k}
$$

$$
\text { - } F=\text { union of these }
$$ oles

- Ri's: disjoint small open sets

$$
\begin{aligned}
& F \cap R_{i}=\left\{\varphi^{n_{i}}\left(x_{i}\right), x_{i+1}\right\} \\
& R=\| R_{i}
\end{aligned}
$$

- $\psi: \cdot \operatorname{supp} \psi \subset \perp R_{i}$

$$
\text { - } \psi\left(\varphi^{n_{i}}\left(x_{i}\right)=x_{i+1}\right.
$$

- $\|\psi\|_{c}$. is small

$$
0 \Rightarrow(\varphi \psi)^{n_{0}+\ldots+n_{k}}(p)=q
$$

Rama $x_{i}, \varphi^{n_{i}\left(x_{i}\right)}, x_{i+1}, \varphi^{n_{i+1}}\left(x_{i+1}\right)$
ave quite close

$$
\Rightarrow \operatorname{size}\left(R_{i}\right) \sim d\left(x_{i}, \varphi^{n_{i}}\left(x_{i}\right)\right)
$$

\Rightarrow cannot moke

$$
\pi \psi u_{e^{\prime}} \text { small }
$$

$$
\begin{aligned}
& p \approx q, \operatorname{supp} \psi c R \\
\Rightarrow & \psi \approx i d \\
\Rightarrow & \psi \approx i d
\end{aligned}
$$

$$
\begin{aligned}
& \text {-if } \delta \text { is small } \\
& \Rightarrow f c^{0} \text { small } \\
& \text { maxi fl }=S \\
& \text { - } f C^{\prime}-s \text { mall? } \\
& f^{\prime} \sim \frac{\delta}{\varepsilon}
\end{aligned}
$$

\Rightarrow If $\delta \ll \varepsilon$ can moke f 'dismal It $\delta \approx \varepsilon$ cannot

