Ex6 Geodesir flows:
sur leces of neg curvotrive

$$
01 / 11-2022
$$

Hyperbolic plane

- $H \left\lvert\,=\left\{\begin{array}{l}z \in \mathbb{C} \mid \operatorname{Im} z>0\} \text { upper holf ploue } \\ n\end{array}\right.\right.$ $x+i y$
Riemannian metric of coust curv $=-1 \leftarrow$ hyperbolic metric

$$
\frac{d x^{2}+d y^{2}}{y^{2}}
$$

- Ceodesirs: circles with centess on the x-axis including vertiol lives:

Return to this
 a bit later

Ex Altar knowing thit $\operatorname{PSL}(2,1 R)$ ave 1 isometrios:

- ebeck Heat a vertical live is a qeodes*
- check that fors ony circle \exists gasendis a vertice bive
- Isometries:

$$
\begin{aligned}
& \operatorname{SL}(2, \mathbb{R}) \rightarrow \underbrace{\operatorname{PSL}(2, \mathbb{R})} \longrightarrow I_{\text {SO }}(H+1) \\
& \begin{array}{c}
\text { Orientibian presesvis } \\
\text { isometides }
\end{array} \\
& \text { isometries } \\
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \stackrel{{ }_{2 \rightarrow 1^{\prime}}}{\stackrel{2 \mapsto}{ }} \underbrace{\frac{a z+b}{c z+d}} \\
& \text { ad-bc=1 fracliowl-lineer } \\
& <\text { not hard trouspormation }
\end{aligned}
$$

Exacheck that this is on action by isometries
\int - Check that $\operatorname{PSL}(2, \mathbb{R}) \longrightarrow I_{\text {so }}(H 1)$ is on isomoophis: every isometo los thi foum
Hint $-g \in I=1(H 1)$ is coupletely dutermina

$v=1$ - For any $(p, w) \in S T H \mid$

$$
\exists!g \text { sot. } g(q, v)=(p, w)
$$

- PSL $(2,1 R) \longrightarrow S T i+1$

$$
g \stackrel{\longmapsto}{\longmapsto} g(q, v)
$$

is an differ

- Compoct surfoces with hy perbolic metrics
Fact (not obvious)

$$
\begin{aligned}
& \left.\sum_{q \geqslant 2} \quad \exists \operatorname{rapsL}_{\operatorname{c}}(2, \mathbb{R}) \quad \operatorname{Cor} \operatorname{SL}(2, \mathbb{R})\right) \\
& \text { P a discrete subgroup } \\
& \rightarrow \exists \text { a ribdU \& I s.t. Uñ } \Gamma=\{I\} \\
& \text {-i.g. } \dot{g}_{2} \text { s.t. } \Sigma_{g} \underset{\text { ditfeo }}{\cong} H / T \\
& \text { I }
\end{aligned}
$$

Con Eg admits a metrric of coustont curvetuve - 1 (a hygnev bolie metric)
Con. $H 1 \cong \mathbb{R}^{2}$ is the universal covering diftes of Σg

$$
\cdot \Rightarrow \pi_{n \geq 2}\left(\Sigma_{g}\right)=0
$$

Con $S T \Sigma_{g} \cong \underbrace{\Gamma \backslash S L(2, \mathbb{R})}$
an algebraic unodel for ST \sum_{g}

Rmik Γ is not unique: diflevent metrics on $\sum_{g 22}$ with $\operatorname{con} 2 v=-1$.

- Algebvair construction:
- $\Gamma \subset S L(2, \mathbb{R})$ a discrete subgroup set. $M=P \backslash S L(2, I R)$ is couppoct and smooth
- glt) $\quad: \quad \mathbb{R} \rightarrow S L(2, \mathbb{R})$ a one promoter subgroup
\Rightarrow a flow on M

$$
\varphi^{t}(x)=x \cdot g(t)
$$

Ex. Toking P as before we get a flow on ST $\Sigma_{g \geqslant 2}$
Specific examples

$$
\text { - } g(t)=\binom{\cos t, \sin t}{-\sin t, \cos t} \in \operatorname{sO}(2) \subset S L(2, \mathbb{R})
$$

\Rightarrow all obits ave periodic

- $g(t)=\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)$ or $\left(\begin{array}{ll}1 & 0 \\ t & 1\end{array}\right) \underline{\text { Howocycle }}$ flow parabolic the projection of any orbit to \sum_{g} (or H1) is a geodesic circle of curvoby $k=1$
Ex: what ave these?

H
egg. Morizatol lines

Ex: Prove the the hovocycly flow in STE los no closed orbits (Need to show feet no orbit con close up as $H\left(\longrightarrow \sum_{g}\right.$

- $g(t)=\left(\begin{array}{ll}e^{t} & 0 \\ 0 & e^{-t}\end{array}\right) \in S L(2, \mathbb{R})$ the geodesic flow:
hyperbolic subgroup
some orbits ave closed (closed geodesics) bit some ave dense?
Two non-obvious facts:
- - Che union of periodic obits is dense
- \exists dense orbits: top tronsitive

Rok Generalizes to groups other thou $S C(2, \mathbb{R})$: important ∇
Further reading
-[CFS]: §4.4

-

Ex 7 - Shift tronsformotious
"Symbolic Dynamics"

- Preliminaries - pt set topology
- $A=$ compact metric space
. $A^{\mathbb{Z}}=\quad \ldots \times+A^{-\prime} \times A^{\circ} \times A^{\prime} \ldots$
Elements: (bi) infinite sequences $x=\left\{x_{i} \in A \mid \varepsilon \in \mathbb{Z}\right\}$
- With product topology:
open sets $\ldots U_{-1} \times V_{0} \times v_{1} \times \ldots=\Pi U_{i}$ where all but a finite number $V_{i}=A$
Fact $A^{\mathbb{Z}}$ is compact
- Metric

$$
d(x, y)=\sum_{i \in \mathbb{Z}} \frac{\left.\int^{2^{i i}}\right)}{\operatorname{con}^{\prime} c} d\left(x_{i}, y_{i}\right)
$$

Rok

$$
\begin{aligned}
\operatorname{dim} A^{\mathbb{Z}} & =\left(1+2 \sum_{i=1}^{\infty} \frac{1}{2^{i}}\right) \text { diam } A \\
& =1+\frac{1}{2} \frac{2}{1-\frac{1}{2}} \\
& =3 \operatorname{diam} A
\end{aligned}
$$

observotion:

$$
\begin{aligned}
& x_{i}=y_{i} \text { fan } \operatorname{li} 1 \leq N \\
& \Rightarrow \quad d(x, y) \leq \underbrace{2 \sum_{i=N+1}^{\infty} \frac{1}{2^{i}} \cdot \operatorname{diamA}} \\
& 2 \cdot \frac{1}{2^{N+1}} \frac{1}{1-\frac{1}{2}} \cdot \operatorname{diamA} \\
& \Rightarrow \quad d(x, y) \leq \frac{\operatorname{diamA}}{2^{N-1}}
\end{aligned}
$$

$\Rightarrow d(x, y)$ is small

- Shift Transformotion
set.

$$
\begin{array}{rlr}
A & =\{0,1\} & d(0,1)=1 \\
M & =A & \\
& =\text { sequences of } 0 \& 1 \cdot \mathrm{~s}
\end{array}
$$

- $\varphi: M \rightarrow M$ shift to the left

$$
\varphi(x)_{i}=x_{i w} \text {, a homeo }
$$

$$
\because x_{<} x_{-1} x_{0} x_{1} x_{2} \ldots
$$

Rnk: variouts

- Replace $A=\{0,1\}$ by the alphobet $A=\{1, \ldots, n\}$. Similan properties
- Peplar A^{Z} by

$$
M=A^{\mathbb{N}}=A \times A \times \ldots
$$

= one sided, intinite seg
$\varphi: M \rightarrow M$, left shift

$$
\varphi\left(x_{0} x_{1} x_{2} \ldots\right)=x_{1} x_{2} x_{3} \ldots
$$

c^{0}, but not inveztible
Interperetotion:
$A=$ collechor of stotes
$x \in A^{\mathbb{Z}}$ a proces

$$
\begin{aligned}
& x_{0}=\text { stete at } t=0 \\
& x_{1}=\square \cdot . \quad t=1
\end{aligned}
$$

Properties

- ψ is very for from an isometry: φ is expansive

$$
\begin{aligned}
& \exists \varepsilon>0 \text { sit } \forall x \neq y \exists k \text { with } \\
& d\left(\varphi^{k}(x), \varphi^{k}(y)\right)>\varepsilon
\end{aligned}
$$

Pf $\quad \varepsilon=1, \quad x \neq y \Rightarrow \quad \exists i: x_{i} \neq y_{i}$

$$
\begin{gathered}
k=-i \\
\varphi^{k}(x)_{0}=x_{i} \\
\varphi^{k}(y)_{0}=y_{i} \\
d\left(\varphi^{k}(x), y^{k}(y)\right) \geqslant d\left(\varphi^{k}(x)_{0}, \varphi^{k}(y)_{0}\right)=1 \\
-1 \sum_{0} x_{1} \cdots x_{1} \\
\cdots y_{0} y_{i} \cdots y_{i} \cdots
\end{gathered}
$$

cahibate contribute with
with weight 1

- Petiodir pto = periodie sequeuces

$$
\Rightarrow p(k)=1 k_{-} \text {periodic pts } \mid
$$

$$
=2^{k}
$$

- Periodor pts are deuse

Pf Given x and $\varepsilon>0$ tobe N sotut

$$
y=\hat{x} \hat{x}^{-N} \hat{x}_{\ldots+1}^{-N+1}
$$

$$
\Rightarrow \quad y_{i}=x_{i} \quad|i| \leqslant N
$$

$$
\Rightarrow d(x, y) \leq \frac{\operatorname{dian} A}{2^{N-1}}=1<\varepsilon
$$

- φ ir top. transitive: \exists a dense orbit.

Pf: $M=A^{\mathbb{Z}}$ is separable:
\exists a countable deus set
(e.g. con tel periodic pis)

Denote these set by

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left.x^{0}, x^{1}, x^{2}, \ldots\right\} \\
k^{2} \quad \begin{array}{l}
\text { each of these is } \\
\text { a bi-infer } \\
\text { sigrience }
\end{array} \\
\forall y \in M \quad x^{i s} \text { st. } \\
d\left(y, x^{i s}\right) \rightarrow 0, i_{s} \rightarrow \infty
\end{array}\right.
\end{aligned}
$$

- Let \hat{x}^{i} be the finite sequela

$$
x_{-i} \ldots x_{0} \ldots x_{i}
$$

and

$$
z=\ldots 0 \ldots 0 \hat{x}^{0} \hat{x}^{1} \hat{x}^{2} \hat{x}^{3} \ldots
$$

claim $\left\{\varphi^{k}(z)\right\}$ is dense
Pf
Given $y \& \varepsilon>0$
Pick $i=i_{s}$ so large twat

- $d\left(y, x^{i}\right)<\frac{\varepsilon}{2}$
- $\frac{1}{2^{i-1}}<\frac{\varepsilon}{2}$
- pich k so thut \hat{x}^{i} is eeuteved at 0 in $\varphi^{k}(z)$

$$
\begin{gathered}
z=\frac{\ldots 0 \ldots 0 \hat{x}^{0} \hat{x}^{1} \hat{x}^{2} \hat{x}^{3} \ldots \hat{x}^{i}}{\varphi^{k}} \\
\Rightarrow d\left(x^{i}, \varphi^{k}(z)\right) \leqslant \frac{1}{2^{i-1}}<\varepsilon / 2 \\
\\
\Rightarrow d\left(y, \varphi^{k}(z)\right) \leqslant \underbrace{d\left(y, x^{i}\right)}_{\hat{\varepsilon} / 2}+\underbrace{d\left(x_{1}^{i}, \varphi^{k}(z)\right)}_{\hat{\varepsilon} / 2}<\varepsilon
\end{gathered}
$$

Ex. Show thut $M=A^{2}$ is homeo to the Contor set

Rmil $\exists C^{\infty} \varphi$: suzfoce P on
φ : disk Q or monitauld \bigcirc
s.t. $\exists K \leftarrow$ invoviout subset

$$
\text { with }\left.u\right|_{k} \cong\left(A^{\mathbb{z}}\right. \text {, shitt) }
$$

These are "horses hoes" very coumon \& importont

Furthor Reoding:

$$
[K M] \delta 1.9
$$

We will keep raturniy to shifts...
§2 Elements of Ergodic Theory

- Letus sow (M, μ) be a mesone $\frac{\text { Lectux } 4 / 13-2022}{5 p a x}$: Usually assume:
- μ is a prabobility measuce: $\mu(m)=1$
- If M is a metric spoce, then μ is a Borel measuse: μ is definiol on all open sets $(\Rightarrow$ on all Bord sob)
Ex: smosth meesure
- M^{n} closed orientable monifold
- $\omega \in \Omega^{4}(\mu), \quad \omega>0$
- $\mu(\tau)=\int_{v} w^{\prime}$

Ex "meesceses supposted on timite seb"

$$
\begin{aligned}
& x \subset M \text { finite } \\
& \mu(v)=\frac{1}{|x|}|x \operatorname{n} v|
\end{aligned}
$$

Ex. linean coubination:

$$
\mu_{0} \& \mu_{1} \text { as above } \Rightarrow \text { so is } \lambda \mu_{1}+(1-\lambda) \mu_{0}
$$

$$
\forall \quad 0 \leq x \leq 1
$$

Rm2:

$$
\begin{aligned}
\operatorname{supp} \mu & =\{x / V v=\operatorname{mbd} \text { of } x, \mu(v)>0\} \\
& \operatorname{supp}\left(\lambda \mu_{1}+(l-\lambda) \mu_{0}\right)=\operatorname{supp} \mu_{0} u \operatorname{supp} \mu_{1}
\end{aligned}
$$

- $\varphi: M \rightarrow M$ is measse preseaving and C^{0} or homeo whar M is also a metric space

Ex. $\varphi: M \rightarrow M$
$X=\left\{x_{8}, \ldots, x_{n-1}\right\}$ a perivdic orbit
\Rightarrow an invariout meosue

$$
\mu(v)=\frac{1}{n}|x n v|
$$

$$
\begin{aligned}
x_{n-1} & =\varphi^{n-1}\left(x_{0}\right) \\
M(\circlearrowleft) & =\frac{\#\left\{x_{i} i n v\right\}}{n} \\
& =\text { frequeny of euterivy } v
\end{aligned}
$$

Revisiting our main exougles from the measure then perspective

Ex: Eradiewt flows:
Ex. For any invoriout Ronal soersue $\operatorname{supp} \mu \subset \operatorname{Crit}(f)=\operatorname{Fix}_{\mathrm{i}}(\varphi)$
In particular whom $\operatorname{Crit}(f)$ ave ibololed, the only inv measures come from fixed pos

Ex. Rotetions of $\&^{\prime \prime}$ or trowslitions of π^{n}

- The stondord measule d θ ou $d \theta_{1} \wedge \ldots \wedge d \theta_{n}$ is obvionsly invoriont
Rombs An isometry of a Riemaknion monitold olways presizves the Rieneaunion vol
- Dependiry on α, there conld be otlor invoriant meosures e.g. $\alpha \in \mathbb{Q}$ than $\theta \mapsto \theta+\alpha$ hes pertadir orbits, ete
weill look into these mops some uva b ber
- $\alpha=\frac{p}{q}, \varphi^{q}=i d$

$$
\begin{aligned}
& \bar{q} \Rightarrow \mathbb{Z}_{k}=\mathbb{Z} / k \mathbb{Z} \text {-action on } s^{\prime} \\
& s^{\prime} \longrightarrow \delta^{\prime} / \mathbb{Z}_{k} \leftarrow \text { circle }
\end{aligned}
$$

every unvaviant meason has of form $=\pi^{*}\left(\right.$ a measure or, $\left.s^{\prime} / \mathbb{Z}_{x}\right)$

Ex. Geodesic flows have a notuval invoriout measure Three ways to see:

1) Q^{h} R. monifold

$$
\begin{aligned}
T Q & \cong \cong T^{*} \mathbb{Q} \longleftarrow \text { syuplect } \\
v & \longleftrightarrow\langle v, \cdot\rangle
\end{aligned}
$$

$\Rightarrow T Q$ also gets a squpl. sth w Geodesir flow is the tham flow of $H(v)=\frac{1}{2}\langle v, v\rangle$
$M=S T Q=\{H=1 / 2\} \longleftarrow$ regubr lovel
Ex $\exists V G \Omega^{2 n-1}(T Q)$ st.

- $v_{1} d H=\omega^{n}$ neor $\{t l=1 / 2\}$
- $\left.V\right|_{M}$ is unique \& $\left.\nu\right|_{M} ^{\neq 0}$

Could use the nototion:

$$
\begin{gathered}
\nu=\frac{w^{k}}{d H} \quad \begin{array}{l}
\text { Irvericut by } \\
\text { constructios? } \\
\text { (emevgy w ionservotion) }
\end{array}
\end{gathered}
$$

A variant $]: \& \begin{aligned} & \text { a vol form } \\ & \& 2 l=c\}\end{aligned} \Rightarrow$ a vol form
\& Example S : \& $\{H=C\}$ on $H=C$

- $\mathbb{R}^{3} \quad d x_{n} d y a d z=\eta$
- $H(x, y, z)=x^{2}+y^{2}+z^{2}$
$S^{2}=\{H=1\}$ regular level
- $\exists v$ sit.

$$
\begin{aligned}
& \quad J_{\wedge d H}=\eta \text { nev } \varsigma^{2} \\
& \begin{aligned}
J= & \frac{x d y \wedge d z-y d x \wedge d z+z d x \wedge d y}{G\left(x^{2}+y^{2}+z^{2}\right)} \\
d H= & 2(x d x+y d y+z d z) \\
V_{\wedge d H}= & \frac{1}{6\left(x^{2}+y^{2}+\tau^{2}\right)}\left(2 x^{2} d x \wedge d y \wedge d z\right. \\
& \left.+2 y^{2} d x \wedge d y \wedge d z+2 z^{2} d x \wedge d y_{1} d z\right) \\
= & d x \wedge d y \wedge d z=Y
\end{aligned}
\end{aligned}
$$

- $\left.V\right|_{\delta^{2}}$ is unique and

$$
=\frac{1}{6}(x d y \wedge d z-\ldots)=\frac{1}{6} \text { area for }
$$

2) STQ has a notraval measine

Invariaue not-obvicus
3) For $S T \Sigma_{g}=\operatorname{PlSL}(2, \mathbb{R})$, i.e.
$Q=\sum_{g}$ with a hyperbolic unatric

$$
\begin{aligned}
& S L(2, \mathbb{R})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a d-b c=1\right\} \\
& \nu=\frac{d a \wedge d b \wedge d c}{|d|}
\end{aligned}
$$

bi-invariant tlaan meosure
\Rightarrow clesceuds to on invoricat meogne on $\pi \backslash S L(2,1 R)$

Rmls : v is pressiwed by all L- povavelor subgroup of $S L(3 \mathbb{R})$

- Other unvaviant neasures (e.9. from periodir orbits)

Ex. Shift transformetions
$\mu_{A}=a$ measure on A
\Rightarrow - a Bovel measue on $A^{Z}=M$

$$
v=\quad \ldots \times v_{-1} \times v_{0} \times v_{1} \times \ldots
$$

1 all but a finibe numb=n $=A$
"a cylinder"

$$
\mu(v)=\Pi \mu\left(v_{i}\right) \text {, then extend }
$$

- μ is shift-invasiart

Sub-Ex $\quad A=\{1, \ldots, n\}$

$$
\begin{aligned}
1 \geqslant & p_{i} \geqslant 0 \text { s.t. } \sum p_{i}=1 \\
& \text { prohobility of } i \\
& \mu\left(\text { lij) }=p_{i}\right.
\end{aligned}
$$

E.9. $p_{i}=1 / n$

Rmk:-Thus we leve wany indaviout

- B othen invociant measures: eg. periodir orbits
- Poincoré Recurrence Thm

Simple ond verg imporfant
Thm (PR) \& difterent vertions - $\varphi: M 』, ~ \mu=$ invariont Bovel mesule
(ix) - VcM, measu)ble (l.g. open), $\mu(v)>0$
\Rightarrow far $a . a . x \in U$ the oubit $\left\{\varphi^{k}(x) \mid k \in \mathbb{N}\right\}$ visits v again (cen set visit time $k \geqslant$ any n)
Con Assume μ is sach that μ (open) >0 $\varphi: M \supseteq \mu$-presezvin
\Rightarrow a.a. pb ave veustrent:
$\varphi^{\prime}(x)$ comes bock and cluse bo x

Interprettion: $v=$ iveut, $\mu(v)=$ probabilits (no mattor how small)
$x, \varphi(x), \varphi^{2}(x), \ldots$ a proces
\Rightarrow eveng possible evert w:ll eventually kodpou again of it hoppers once

cylinder with a gas

- Initial condition: gas is one half of the cylinder
- this is a positive (but close to 0) probability event
- \exists time $T>0$ such that the gas on its own will again concentrate in one half of the cylinder
- Why doit we observe this?

The reason is the T is huge? Longer than tho existence of the universe!

