Ss Introduction to hyperbolicity
$\frac{\text { Lecture 18 }}{03 / 08-2022}$

- The horseshoe

Recall: Bernouilli shift

- $K=\mathbb{Z}_{2}^{\mathbb{Z}}=\left\{\right.$ bi-in f sequences $\left.a_{i} \in \mathbb{Z}_{2}\right\}$ with product top/mehror $=20,13$
Ex: $K \cong$ Cantor set
- $\sigma: K \rightarrow K=$ shit to the left

$$
\begin{gathered}
(\sigma \vec{a})=a_{2+1} \\
\leftarrow \leftarrow \leftarrow_{i} \leftarrow a_{-2} a_{1} a_{0} a_{1} a_{2} a_{3} \ldots
\end{gathered}
$$

Properties: Periodic points are dense

- \exists dense orbits (residual at
- engodor

Rom k: Different from other examples which are manifolds

Key fact: Smaless hovseshoe

$$
M=a \operatorname{sunface}\left(l-g \cdot R^{2} o n S^{2}\right)
$$

$\exists \varphi: M \longrightarrow M$ counpaetly supported and $j: K C M$ s.t. $\varphi \mid k=\sigma$

Coustraction

extend to the zoot of M
Δ

$$
\begin{aligned}
K= & \bigcap_{k=-\infty}^{\infty} \varphi^{k}(\Delta)=\operatorname{mox}_{\operatorname{inv}} \text { of subset } \Delta
\end{aligned}
$$

Claim: $\quad K \cong \mathbb{Z}_{2}^{\mathbb{Z}}$ and $\left.\varphi\right|_{k}=\sigma$.
Outline of the pf - syn bolos dynamics
Simplification

λ

$K \subset \Delta$ but not in $\operatorname{int}(\Delta) \ldots$

$$
\begin{aligned}
& \{x \mid x \in \Delta, \varphi(x) \in \Delta\}=\Delta_{0} \cup \Delta_{1} \\
& \underbrace{\left\{x \mid x \in \Delta, \varphi(x) \in \Delta, \varphi^{2}(x) \in \Delta\right\}} \\
& \left\{x \in \Delta_{0} \cup \Delta_{1} \mid \varphi(x) \in \Delta_{0} \cup \Delta_{1}\right\} \\
& =\Delta_{00} \cup \Delta_{0,} \cup \Delta_{10} \cup \Delta_{11}
\end{aligned}
$$

etc

$$
\begin{aligned}
& \left\{x \mid x \in \Delta, \varphi(x) \in \Delta, \ldots, \varphi^{n}(x) \in \Delta\right\} \\
& =2^{n-1} \text { narrow vertical strips } \\
& k^{+}=\left\{x \mid \varphi^{k}(x) \in \Delta \quad \forall k \in \mathbb{N}\right\} \\
& =\text { Condor set } \times[0,1]
\end{aligned}
$$

Coding trojechozies (syubolo dynamics)

$$
\begin{aligned}
& K \\
x & \longmapsto \mathbb{Z}_{2}^{N} \\
& a_{0} a_{1} o_{2} \cdots
\end{aligned}, a_{k} \in \mathbb{Z}_{2}
$$

Apply the some process to φ^{-1}

$$
\begin{aligned}
& \left\{x \in \Delta l, \varphi^{-1}(x) \in \Delta\right\}=\Pi_{0} \cup \Pi_{1} \\
& \begin{array}{l}
\left\{x \in \Delta \mid, \varphi^{-1}(x) \in \Delta, \varphi^{-2}(x) \in \Delta\right\} \\
\left.2 x \in \Pi_{0} \cup \Pi_{1} \mid \varphi^{-1}(x) \in \Pi_{0} \cup \Pi_{1}\right\}=\Pi_{00} \cup \Pi_{0,} \cup \Pi_{10} \cup \Pi_{u l} \\
\cdots \cdots
\end{array} \\
& K^{-}=\left\{x \mid \varphi^{-i}(x) \in \Delta \quad \forall k \in N^{\prime}\right\} \\
& =[0,1] \times \text { Cutor set }
\end{aligned}
$$

$$
K=K^{+} \cap K^{-}=\left\{x \in \Delta \mid \varphi^{k}(x) \in \Delta \forall k\right\}
$$

syubolic dynomics:
To summavize:

$$
\begin{aligned}
& K=\mathbb{Z}_{2}^{\mathbb{Z}} \\
& x \longmapsto a_{-1} a_{0} a_{1} a_{2} \ldots \in \mathbb{Z}_{2} \mathbb{Z}^{\prime} \quad \ldots \quad k \in \mathbb{Z} \\
& a_{k}=\quad \begin{array}{cc}
0 & 1
\end{array}, \quad \varphi^{k}(a) c \Delta_{1}
\end{aligned}
$$

- Then one shows thit this unap is a homeonosplisn
- $\varphi \mid K=\sigma$ by coustruction

Impozhent: houseshoes (on suith liki il) ave ubiquitous eparticularly in 2D) for c^{∞}-intinity generic $\varphi: M^{2} \unrhd$ $\exists K \subset M$ s.t.

$$
K \cong \mathbb{Z}_{2}^{2}
$$

$$
\begin{aligned}
& \text { n. } \\
& \text { nomitus } \\
& \text { spechin }
\end{aligned}
$$

(Katok, Le Colvez)
tlyperbolic mops e sets-definitions
Recall: another exauple of φ with the same properties an σ is $A: \pi^{n} \rightarrow \pi^{n}$ lineen $|\lambda| \neq 1$

- It teirins out that there propesties are esentially a consequence of a common feoture: hyperboticity

Del $\quad \varphi: M \rightarrow M$ is hyperbolic if \exists

- a splitting

$$
T M=E^{3} \oplus E^{M}: \quad T_{x} M=E_{x}^{s} \oplus E_{x}^{u}
$$

invariant undn DY

$$
\begin{aligned}
& 0 \quad 0<\eta<1 \text { \& ind of } x 8 v \\
& \left\|D \varphi_{x}(v)\right\| \leq \eta n v \| \\
& \left\|D \varphi_{x}(\sigma)\right\| \geqslant \eta^{-1}\|v\| \\
& F^{n} \varphi_{x} \\
& \| v \in E^{4}
\end{aligned}
$$

Shrinks vectors from E^{s} by $\quad \eta_{y}<1$ bure en
Exteuchs vectorn tran $E^{"}$ by Exteucs vectorn tron E^{4} by $(y / y>y$

Ex $\operatorname{AESL}(n, \mathbb{Z})$ with all $|\lambda| \neq 1$

$$
\begin{aligned}
& A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\
& \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n} \\
& \text { A: } \mathbb{R}^{n}=\mathbb{R}^{n} \mathbb{Z}^{n}
\end{aligned}
$$

$$
A^{-1} \in \operatorname{SL}(u, \mathbb{Z}) \Rightarrow \text { homes }
$$

E.g. $A=\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)$ Avnold's cat mop

Spliting:

$$
\begin{aligned}
& T \pi^{h}=\pi^{h} \times \mathbb{R}^{h} \\
& D A=A: \mathbb{R}^{h} \rightarrow \mathbb{R}^{h}
\end{aligned}
$$

$$
\begin{aligned}
& E^{u}=\operatorname{span}(\text { eigenveltors wiik }|\lambda|>1) \\
& E^{s}=\operatorname{span}(\text { eigenvecbors with }|\lambda|<1) \\
& \eta=\max _{|\lambda|<1}|\lambda|
\end{aligned}
$$

Rnk Hyperbolic mops ave very vare: essentially all exauples heve the same aly natuve as $y=A$

Hyperbole sets:
$\varphi: M \rightarrow M$; K closed invariant set
Def K is hyperbolic for φ if \exists

- a splitting

$$
T_{k} M=E^{3} \oplus E^{n} ; \quad T_{x} M=E_{x}^{S} \oplus E_{x}^{u} \quad x \in K
$$

invoinawt undo DY

$$
\begin{aligned}
& 0<\eta<1<\text { ind of } x, v \\
& \left\|D \varphi_{x}(v)\right\| \leqslant \eta\|v\| \quad \forall v \in E^{s} \\
& \left\|D \varphi_{x}(v)\right\| \geqslant \eta^{-1}\|v\|
\end{aligned} \quad \forall v \in E^{4}, x \in K
$$

Shrink vectors from E^{s} by $\eta<1$
Extends vectors tran E^{4} by $V_{\eta}>1$ but only for $x \in K$

Ex i) $\varphi: M \rightarrow M$ hyperbole: $K=M$
2) hyperbolic fixed an pentodic pto
3) Horseshoe?

Ruk similauly for flows bert now therer also one neutral divection

$$
T M=E^{s} \oplus E^{4} \oplus \underbrace{\operatorname{span}(v)}, \quad v \neq 0
$$

Ex- Geoderic oflows on surfaces of curvoture $<0 \quad(1 . g .=-1)$
Myperbolicity is one of the centiral notrous in modern dynomis!

$$
\text { hy perbolicity }+a b i t \text { mise } \Rightarrow \begin{aligned}
& \text { a lot } \\
& \text { of glyngints } \\
& \text { foteres }
\end{aligned}
$$

structural stebility of hyporbolir sets

Hyperbolicity \Rightarrow many importont dynamiss feo twies
Here we focus on str. stebilidy
Def $K=$ comyoAt invariaut set is locally $\mathrm{max}_{2} \mathrm{mal}$ it \exists VOJK such thut K is the maximal inv set in v :

$$
\begin{aligned}
& \varphi^{k}(x) \in U \forall k \in \mathbb{Z} \Rightarrow x \in k \\
\Leftrightarrow & k=\bigcap_{k \in \mathbb{Z}} \varphi^{k}(\vartheta)
\end{aligned}
$$

Thm K locally max \& hypeibolic
for φ
$\Rightarrow \varphi$ is str. stoble neon K :

$$
\begin{aligned}
\psi & \stackrel{c^{\prime}}{\approx} \varphi \Rightarrow h: n b d \text { of } K \rightarrow \text { nbd of } K \\
\text { s.t. } & \Rightarrow=h \varphi h^{-1}
\end{aligned}
$$

Ex $\quad k=a$ hypevbolic kixed pt Thm \Leftrightarrow Hartman-Grobman

$$
\begin{aligned}
& \Leftrightarrow \varphi(x)=x \quad \Rightarrow \psi \psi(y)=y \\
& \left.\left.\nabla \psi\right|_{y} \approx D \varphi\right|_{x} ^{I F=} \Rightarrow \text { hyperbolv }
\end{aligned}
$$

HG \quad ч $\sim D \psi \sim D \varphi \sim \varphi$

$$
\Rightarrow \varphi=\Delta \varphi+\ldots \operatorname{Thm} \Rightarrow \varphi \sim D \varphi: H G
$$

Ex $K=M$, φ hyperbolic
$A \Rightarrow \varphi$ is str. stoble
This is what we will prove Panticular case

Thim (Anosou)

$$
\varphi=A: \pi_{c^{\prime}}^{k} \rightarrow \pi^{k} \text { hyperbolo }
$$

$\psi \stackrel{c^{\prime}}{\approx} A \Rightarrow \psi$ is bp couj to A :

$$
\exists h \quad \psi=h A h^{-1}
$$

Pf. For the soke of simplicity $n=2: T^{n}=\pi^{2}: A$ is 2×2

- Wribe c'-small

$$
\varphi=A+R: \pi^{2} \longrightarrow \pi^{2} j
$$

$$
\mathbb{R}: \pi^{2} \rightarrow \mathbb{R}^{3}
$$

$$
h=i d++1 \quad \pi^{2} \longrightarrow \pi^{2} j
$$

$$
M: \pi^{2} \rightarrow \mathbb{R}^{2}
$$

$\pi^{2} \xrightarrow{\psi} \pi^{2}$ with be C^{0}-swab $\mathbb{R}^{2} \xrightarrow{\varphi} \mathbb{R}^{2}$ N not ${ }^{\text {net }}$
$h \uparrow G\{h$ lift

$$
p_{h} \imath^{2}
$$

$$
\begin{aligned}
& \pi^{2} \xrightarrow{A} \pi^{2} \\
& \psi=h A h^{-1} \\
& (A+R) \cdot(i d+H)=(i d+H) A \\
& (A+R) \cdot(x+H(x))=A x+H(A x) \\
& A x+A H(x)+R(x+H(x))=A x+H(A x) \\
& H(A x)-A M(x)=R(x+H(x))
\end{aligned}
$$

needed

This the equation on H we need to solve.

Letis sport with simpler equation

$$
\begin{aligned}
& H(A x)-A H(x)=R(x) \\
& \uparrow \text { unknown given }
\end{aligned}
$$

$L: H \longmapsto M O A-A O H$

$$
C^{0}\left(\pi^{2} ; R^{2}\right) \longrightarrow C^{0}\left(\pi^{2} ; \mid R^{2}\right)
$$ ir H

claim L is invertible
pf and $n L^{-1} n \leq \frac{1}{1-\lambda}<$ clos not
e_{1}, e_{2} eigenvectors of A
$\lambda_{1} \lambda_{2}$ eigenvalues

$$
\begin{aligned}
& H=H_{1} e_{1}+H_{2} e_{2} \\
& R=R_{1} e_{1}+R_{2} e_{2}
\end{aligned}
$$

$$
\lambda_{1}=\lambda_{2}^{-1}>1>\lambda_{2}=: \lambda
$$

$$
\begin{array}{r}
\Rightarrow \quad H_{1}(A x)-\lambda_{1} H_{1}(x)=R_{1}(x) \\
\\
H_{2}(A x)-\lambda_{2} H_{2}(x)=R_{2}(x)
\end{array}
$$

Consider $P: C^{0}\left(\pi^{2}\right) \rightarrow C^{0}\left(\pi^{2}\right)$
identity $\searrow \quad g \longmapsto g \circ A \quad\|P\|=1$

$$
\underbrace{\left(P-\lambda_{i} I\right)}_{\lambda_{i}\left(\lambda_{i}^{-1} P-I\right)} H_{i}=R_{i}
$$

when $i=1 \quad \lambda_{1}^{-1}=\lambda_{2}<1 \Rightarrow\left\|\lambda_{2} P\right\|<1$

$$
\Rightarrow\left(\lambda_{2} P-I\right)^{-1}=\underbrace{-\left(I+\lambda_{2} P+\lambda_{2}^{2} P^{2}+\ldots\right)}_{\text {eon verges }}
$$

when $i=2$

$$
\begin{aligned}
& P-\lambda_{2} I=P^{-1} \underbrace{\left(I-\lambda_{2} P\right)}_{\text {invirisible }} \quad\left\|\lambda_{2} P\right\|=\lambda_{2}<1 \\
\Rightarrow & L=\binom{P-\lambda_{1} I}{P-\lambda_{2} I} ~ \leftarrow \text { invertible }
\end{aligned}
$$

Bade to solving

$$
H \circ A-A \cdot H=R(I+H)
$$

Recall: Contraction mapping principle:
$\Phi: X \underset{\substack{\text { complimahrer }}}{c^{0}} X \quad d(\Phi(x), \Phi(y))<\eta d(x, y)$ couple, mater

$$
\text { spec, } \quad \pi \quad 0<\eta<1
$$

$$
\Rightarrow \quad \exists \text { fixed pt } x: \Phi(x)=x
$$

Pf Take any $y \in X$ and set

$$
\begin{aligned}
& y_{k}=\Phi^{k}(y) \leftarrow \text { Gaudy sequel } \leftarrow E x \\
& y_{k} \longrightarrow x<\text { Fixed pt } \\
& \Phi(x)=\lim \Phi\left(y_{k}\right) \\
& \quad \lim y_{k+1}=x
\end{aligned}
$$

Tole $\quad X=C^{0}\left(\pi^{2} ; \mathbb{R}^{2}\right)$ with sup-novm

$$
\begin{aligned}
& \psi: X \rightarrow X \\
& \psi(H)=R(I+H)
\end{aligned}
$$

Key equation:

$$
L(H)=\Psi(H)
$$

$\Leftrightarrow \quad H=L^{-1} \psi(H) \leftarrow$ fixed βt equobion
Claim $\Phi=L^{-1} \Psi: X \rightarrow X$ $\|$ is a contraction mapping
Tho
Pf. $\left\|L^{-1} \psi\left(H_{1}\right)-L^{-1} \psi\left(H_{0}\right)\right\| \leqslant\left\|L^{-1}\right\| \pi \psi\left(H_{1}\right)-\psi\left(H_{0}\right) \|$

- $\psi\left(H_{1}\right)-\psi\left(H_{0}\right)(x)$

$$
\begin{aligned}
& =R\left(x+H_{1}(x)\right)-R\left(x+H_{0}(x)\right)=? \quad x+\mu_{0}(x 0) \\
& =\int_{0}^{1} \frac{d}{d t} R(\underbrace{x+t H_{1}(x)+(1-t) R_{0}(x)}_{\gamma(t)}) d t \\
& \text { standevd } \\
& \begin{array}{l}
\text { Alternatively } \\
\text { one con }
\end{array} \\
& \text { one can men mem } \\
& \text { and woeful troele } \\
& \text { value thin to } \\
& \text { cup ponies) arse } \\
& R(\gamma(t))
\end{aligned}
$$

$$
\begin{aligned}
& \sup _{x}\left|\psi\left(H_{1}\right)-\psi\left(H_{0}\right)(x)\right| \\
& =\sup \left|R\left(x+H_{1}(x)\right)-R\left(x+H_{0}(x)\right)\right| \\
& \leqslant \sup _{x}^{x} \int_{0}^{1}|\frac{d}{d t} R(\underbrace{x+t H_{1}(x)+(1-t) R_{0}(x)}_{\gamma(t)})| d t \\
& \leqslant \sup _{x} \int_{0}^{1} D R_{\gamma(t)} \cdot\left(H_{1}(x)-H_{0}(x)\right) \mid d t \\
& \leqslant \sup \sup \|D R\| \cdot\left|M_{1}(x)-M_{0}(x)\right| \\
& \Rightarrow U \psi\left(H_{1}\right)-\psi\left(H_{0}\right)\|\leqslant\| R U_{C^{\prime}} \cdot\left\|H_{l}-H_{0}\right\| \\
& \Rightarrow\left\|\Phi\left(H_{1}\right)-\Phi\left(H_{0}\right)\right\| \leqslant \underbrace{\left\|L^{-1}\right\| \cdot\|R\|_{c}}_{\eta} c^{\prime} \cdot \| M_{1}-M_{0} \mid
\end{aligned}
$$

$\| R U_{C^{\prime}}$ small ewoufh $\Rightarrow \quad 0<\eta<1$
$\Rightarrow \Phi$ is a contraction mopping
Also meed to show that $h=i d+H$
is a homer. Not obvious bat not bond

- Ex mint use again the fact that A is hyperbolic

Ruck $R \quad e^{\prime}$-small \Rightarrow id $+R$ is a C^{\prime}-differ (Nuance) \leftarrow Inv. Function theorem

But $R C^{0}$-small $\ngtr i d t R$ is a homes

Rmk: A similan angemputt proves (Ix) the Hartmon - Grobman thm

$$
\rightarrow \text { The End }
$$

