morse Theory, math 232

Lecture Notes
V.L.Gingburg, usS 2021 w

Table of contents

- Generolities about the cousse syilcbus, References ete PortI: Morse theory for

$$
\text { y } \text { finite-dim manitolds }
$$

$$
\begin{aligned}
& \text { S1 Mativohion \& Examples } \\
& \text { \$2 Basic Detinibrous: } \\
& \text { Mouse funchious \& strotegy }
\end{aligned}
$$

mouse functious \& strotegy
a
a Regulan value inter
J
J
\& 4 Morse Lemma

+ Siegularities

$$
14
$$

s5 Some topology:
CW-couplixes, Generolitios
Some Alg topology: ew-couplexes, Homology
$\left[\begin{array}{ll}\$ 7 & \text { Main Thm \& Morsi Inequalitis } 42 \\ \$ 8 & \text { Pfot the Main thm and }\end{array}\right.$ fuzther zefinemeub, handlitodis A Glimpse of Appl to D.if Topology

L $\$ \$ 10$ Flower Theory Perspective Calculations of H_{*} (M) $\begin{array}{ll}n \\ \sim \\ \varphi & \text { using Mouse how, Applictions }\end{array}$
$\$ 12$ Existence of Mouse Function:
Part I: via Trausuerselits Tim

Port II: Lusternik-Sobrivelmann

$$
100
$$

Theory

PartIII: Geodesies zall thet 139

Grten's Thm
$\delta 25$ Closed Geodesics, IZ:
Lusterrik-Fet Tom
$\$ 28$ Gele of Var. Guestious
Inf-dim Approach
161
A guick blonce at other 266 ps: Moss Theony
§29 Applicolion I:
Bott's Periadicity (for U(x))
530 Appricotion N:
Lefochetz Hyperplone
sectron Thm

Presentotious Cnot included in Lecture Notes)

- Erman Civeli:
mors-Novika Theory
- John Pelais:

Lagrongian Floen Theorg

- Elijah Fender:

Equivariant Morse Theony
morse Theory, moth 232 2021 W
$\frac{\text { A few words about the class: Not on Canvas - email Zoom links }}{\text { - Noctule }}$ (05

- Post lecture notes

Record and post videos

- No exams or kw

But mention problems in class

- Presentations (optional)
- the end of the varter
- No textbook - diseur sources below
- Prerequisites: The manifolds sequence
- Basic Differential Geom
- (Colhomology

Textbooks and other sources:
$\left.\begin{array}{l}\text { - Morse Theory" by J.Milnon } \\ \text { "Lectures on morse theory, } \\ \text { old and new" R. Bott }\end{array}\right]$ Before

$$
\begin{aligned}
& \text { old and new" R. Bott } \\
& \text { BAMS I (1982), 331-358- Rec }
\end{aligned}
$$

Flown

$$
\begin{aligned}
& \text { - Many Diff Top books: } \\
& \text { Midsh, } \frac{\text { Fomenko-Dubrovin-Novikor }}{\text { not so bad }} \int \text { Theory }
\end{aligned}
$$

- "Riemannion Geometry and

Geomets'r Analysis" J. Josh
(Cha pf) 20il \& Recommend d
"Morse Theory and Flown Homology"

$$
\text { M. Audio and m. Domian } 2014
$$

- Lectures on Morse Homology
A. Banyaga and D. Murtubise 2004

In mid 80s a new way of thinking about mouse Theory - Fioen theory was develop ped.
It is actually a variant (subset) of Morse theory but it has influenced the theory as C a whole.
Our teotment in this class will be modern based on this new perspective but we probably only briefly torch upon Fiber theory as such.
suggested Topics for Presentotions

- Morse-Novikar Theory (Erman)
- Morse-Bott \& Equiv Morse Theory
- Morse theary for geadesies orse theory
(connecking two podes milnors book
- Morsethorg for clised geodesics and Lustermik-Fet thm (Bott's notes)
- Convex Mamiltonion systems (Periodic oubits. a la Ekeland, Fodel-Re binow'itz, Af or ouvex care
- n-cobordis thm (milnor) (Appl to
- Lefochetz hyperplane thom top \& alg
- Bott periodicity thm . \int geometry
- Hamiltonian circle actions: syuplectic geometry, colurlation of Chomology a la $\subset p^{n}$, ete
whet morse theory is about
$P=$ a reasonable space
e.g. finite on inf. dim manifold:
a closed manifold space at closed loops, or poths with fixed pts
$f: \mathbb{P} \rightarrow \mathbb{R}$ revionobly nice "smooth"furch
1-g. a "generic" smooth function on a smooth closed manifold on length or bettor energy

$$
x \mapsto \int|\dot{x}|^{2} d t
$$

Goal: relate critical pos of f
to the topology of P form ology on
homology type
Not pt set topology
Egg.- Lower bound on 1 Prit(f))
in terms of $H_{*}(P)$
In peraticulon the existence of Crit (f)
How do we know \exists at least one?
E.g. existence of closed geodesics

Conversely: understand the tor of P

$$
\text { (1.g., } H_{\infty}(P) \text {) via the sh }
$$

$$
\begin{aligned}
& \text { Pig. Mヵ (p) via the sha } \\
& \text { of } f \text { and in ponticulan Crit } f \text {) } \\
& \text { t mow is to }
\end{aligned}
$$

+ more info
Note: Many hugely important objects in

$$
\begin{aligned}
& \text { moll in phyurs are critical } \\
& \text { phot some functional farina }
\end{aligned}
$$

pi of some functional f usrintional principles

Part I: Morse theory for
finite-dim manifolds
Setting: $P=M: \underbrace{\text { closed }}_{\text {con be relaxed }}=$ connect, $\partial P=0$

$$
\begin{aligned}
& f: P \xrightarrow{C^{k}} \mathbb{R}, \begin{array}{l}
\text { Can be relaxed } \\
k \geqslant 2 \text { usually } \infty \\
\text { Crit }(f)=\{p \mid \underbrace{d f(p)=0}\} \\
\text { the set of } \\
\text { Cringe pto }
\end{array} \quad \begin{array}{l}
L_{x} f(p)=0 \forall x \in T_{p} P
\end{array}
\end{aligned}
$$

Main question: produce a meoniugfol lower bound for \mid Crit $(f) \mid$.
\$1 Motivation \& Exauples:
E.g. $\mid \underbrace{|\operatorname{cnit}(f)| \geqslant 2-\text { not very interesting. }}$

$$
B \text { mex \& min }
$$

Rink. But here we con alveody look at some interacher with top

- what if $|\operatorname{Crit}(f)|=2$

$$
\operatorname{lvit}(f)=\{\operatorname{mox}, \min \}
$$

Fact: P $\underset{\text { homes }}{\text { sh but not necessarily }}$
Areturn to this later
$\underset{\text { Ex }}{\underset{\text { sufface }}{\text { Closed }}} \rightarrow \underset{\mathbb{R}^{3}}{P} \rightarrow \mathbb{R}$ height funchion

$$
p \in \operatorname{Crit}(t) \Leftrightarrow T_{p} P \text { is hoiizoutal }
$$

$$
\#=4=2
$$

$$
\#=6
$$

minpasibly
These and similan excuples suggest

$$
\operatorname{zg}_{s^{a}} d d d s\left\{\left.\left(\begin{array}{l}
0 \\
\vdots \\
\partial
\end{array}\right) \xrightarrow[\rightarrow]{f} \right\rvert\,\right.
$$

Not true (other then $g=0$)
But almost true

Ex. $\exists f: P=\bar{\Sigma}_{g} \xrightarrow{c^{\infty}} \mathbb{R}$
with exactly 3 ait. pros when $g \geqslant 1$
sphere $\longrightarrow 2 \longrightarrow \quad$ —. $\quad g=0 \cdot s^{2}$
(obvious)
Coustrect such a function D.
Hint: collapse all Zg sade es unto one "monkey saddle":
Ex.

Rub. This f is wot a height function But true fan a broad clans of functions $=$ house functions
\Rightarrow Key definitions $\stackrel{\square}{0}-p .8$

Rmk. Such a function f conuot

- Ex. be the couposition

$$
\sum_{g} \underset{\text { enbed }}{C} \mathbb{R}^{3} \xrightarrow{z} \mathbb{R}
$$

- But it con be

$$
\pi^{2} \underset{i m m}{\longrightarrow} \mathbb{R}^{3} \xrightarrow{z} \mathbb{R} \text {, but not } \sum_{g>1}
$$

Ref (Fron Elijak):
projectenclid.ong/enclid.ijm/1256050732
$=$ T. Banchoft, F. Takeus
"Height functions on suzfoces with three evitical points", Illinois. J. Mcth

$$
19(1975), 325
$$

§2 Basic Definitions - Morse functions
$f: P \underset{w}{p} c^{2} \mathbb{R} \quad$ and the strategy

$$
p \in \operatorname{Crit}(f)
$$

Def. The Hessian of f at p

$$
\begin{aligned}
d_{p}^{2} f: & T_{p} P \times T_{p} P
\end{aligned} \quad \mathbb{R} \text { directional } \quad \begin{aligned}
& \text { derivetives } \\
& \\
& (v, w) \longmapsto\left(L_{v} L_{\sim}^{\sim} f\right)(p)
\end{aligned}
$$

could be v
\tilde{v}, w ext of $v \& w$ to v.f. neon p.
$\approx \rightarrow$ Need to check: independent of $\widetilde{v} \sim$

Prop. a) well-defined \leftarrow ind of \tilde{v} \& \widetilde{w}
b) symmetric
c) In local coordinates: the ordinery

$$
d_{p}^{2} f(v, w)=\sum \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(p) v_{i} w_{j}
$$

where $v=\sum \sigma_{i} \frac{\partial}{\partial x_{i}}, w=\sum w_{i} \frac{\partial}{\partial x_{i}}$

$$
\begin{aligned}
& x=\left(x_{1}, \ldots, x_{n}\right) \leftarrow \text { local cord } \\
& \text { neon } p
\end{aligned}
$$

Rit. © Condition $p \in C_{r i t}$ is essential:
otherwise $d_{p}^{2} f$ is not well-defiwed

- Ex. If $(p) \neq 0 \Rightarrow \exists$ a coordingte system ween p st.

$$
f(x)=x_{1}
$$

In fact one ca melee $f(x)=x_{1}+Q(x)$
anythis hiriden
Pf
c) \Rightarrow a) $\& b)$
r The dumbest and simplest way to prove the prop
Proving e):

$$
\begin{aligned}
& L_{\tilde{w}} f=\sum_{j}^{\sum_{j} \underbrace{\tilde{w}_{j} \frac{\partial f}{\partial x} j} \quad \text { Aunctiars }} \begin{array}{r}
\text { of } x
\end{array} \\
& \left.L_{w} L_{\tilde{w}} f\right|_{p}=\sum_{i \cdot j} L_{\tilde{v}_{i}} \tilde{w}_{j} \left\lvert\, \underbrace{\frac{\partial f}{\partial x}(p)} \int \underbrace{j} \dot{E}_{p} f=0\right. \\
& +\sum_{i, j} \underbrace{\tilde{v}_{i}(p)}_{v_{i}} \underbrace{\tilde{w}_{j}(p)}_{w_{j}} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(p)
\end{aligned}
$$

Using more a dvoncee tools of calculus on manifolds:

Coordinabe-free pf of b):

$$
\begin{aligned}
L_{\tilde{v}} L_{\tilde{w}} f-L_{\tilde{w}} L_{\tilde{v}} f & =L_{[\tilde{w}, \tilde{w}]} f \\
& =d f([\tilde{w}, \tilde{w}]) \\
& =0 \text { (a) } p
\end{aligned}
$$

Again the coudition $d f_{p}=0$ is esential
Coordivote-free pf a):
Alvedy know thit $d_{p}^{2} f$ is sywuetric
Need to show $\tilde{\omega}(p)^{j}=0 \Rightarrow d_{p}^{2}-1(\tilde{v}, \tilde{\omega})=0$
But $d_{p}^{2} f(\tilde{w}, \bar{w})=L_{\pi}\left(L_{\tilde{w}} f\right)(p)=0$
Serends ouly on $\tilde{\omega}(p)=\tilde{\omega}=0$

Ex.

$$
P^{n} \subset \mathbb{R}^{n+1}
$$

$f=$ projection to some divection e.9. x_{n+1} - coordinate

the best quadratic approve motion of f
 The segue 4 $\underset{\mathbb{I}_{p}}{\operatorname{Rovm}_{p}}{\cdot T_{p} P T_{p} P}_{\rightarrow}^{P}$

$$
P=\operatorname{graph}(f)
$$

$\underbrace{\left(x_{1}, \ldots x_{2}\right)}_{\tilde{R}^{2}}<$ local cord on \mathbb{P}

Further definitions:

$$
p \in \operatorname{crit}(f)
$$

Deft) P is nor-desenenote if $d_{p}^{2} f$ is nan-degenerate
b) The Morse index (or just index) of p in the $\underbrace{\text { indes of } d_{p}^{2} f}$

$$
\begin{aligned}
& 0 \leqslant \operatorname{sind}_{p} f \leqslant n \\
& \text { din } P \quad \text { the \#of reg live } \\
& \text { squeres when } \\
& d_{p}^{2} f=x_{1}^{2}+\ldots x_{t}^{2}-\underbrace{x_{k-1}^{2} \ldots x_{n}^{2}}_{\text {index }}
\end{aligned}
$$

c) f is Morse if all $\operatorname{Cnt}(f)$ are non-dgeve rote
Notation: $\operatorname{Crit}_{k}(f)=$ crit pb of irdes k

$$
P \subset \mathbb{R}^{3}
$$

Ex A Monkey saddle is degenevab!

Goal
Relate the critical pos of a Mouse function to the topology of P.
In particular prove:
Mouse Inequalities

$$
\left|\operatorname{Crit}_{k}(f)\right| \geqslant \operatorname{dim} H_{k}(P)
$$

stroteqy:
Do this inductively moving
min to maxi
and looking at how the topology $\{f \leqslant c$? changes with c

Relevent questions:

- How do we know morse functions exist on P?
- If so how common ave they?
§3 Regular value intervals
Lecture 3
$01 / 07$
Key pt: nothing happens to $\{f \leqslant c\}$ as long as e reunains regular?

To be more precise:

- $f: P \xrightarrow{c^{2}} \mathbb{R}$
compact or f is proper
- $[a, b]<\mathbb{R}$ contains no critical

Prop $\{f \leq a\}$ is dittes to $\{f \leq b\}$

Rake only matters that $f^{-1}([a, b])$ is comport.

Pf: Use (anti) gradient flow

- key tool in more theory
- Fix a Riemarnian metric on P:

$$
\langle,\rangle: T_{P} P \bar{x}_{P} P \longrightarrow \mathbb{R}
$$

symmetric 8 pos. def

- $\nabla f:\langle\nabla f, \cdot\rangle=d f$

If $\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{4}}$ is oithonornol basis at p :

$$
\begin{align*}
& \text { metur }=\sum d x_{i}^{2} \\
& \nabla f \text { is } c^{\prime} \Leftarrow f \text { is } c^{2} \tag{14}
\end{align*}
$$

$$
\begin{aligned}
& \nabla f(p)=\sum \frac{\partial f}{\partial x_{i}} L_{p} \frac{\partial}{\partial x_{i}} \quad \text { or } R^{2} \\
& L_{\nabla f} f=d f(\nabla f)=\langle\nabla f, \nabla f\rangle=\|\nabla f\|^{2} \\
& x=-\frac{\nabla f}{\|\nabla f\|^{2}} L_{x} f=-1 \\
& \varphi^{t}=\text { the flow of } x, \text { local existence } \in \underbrace{\nabla f c^{\prime}}_{\pi} \\
& \frac{d}{d t} f\left(\varphi^{t}(x)\right)=L_{x} f(x)=-1
\end{aligned}
$$

f decreases along the flow lines of X with snit speed

Technical pts:

- compactness $\Rightarrow \varphi^{t}$ is detived for all t
- $[a, b]$ reqular $\Rightarrow \nabla f \neq 0$ on $\int^{-1}([a, b])$

Rok what to change when only $f^{-1}([a, b])$
-Ex. is compact:

- $f^{-1}([a, b]) \operatorname{conpoot} \Rightarrow f^{-1}([a-\varepsilon, b])$ confect

- Replace X by g.X:
$g: P \rightarrow \mathbb{R} \quad g=h \circ f$ ent-of function.
§4. Morse Lemma
Answers the question of whet happens at critical pts But actually more significant

Prop (Mouse Lemma) $\quad f \in C^{3}$
$p \in C_{r i t}(f)$ is non-des \Rightarrow

- a cooed system s.t.

$$
\begin{aligned}
f(x) & =f(p)+\frac{1}{2}\left(-x_{1}^{2} \ldots-x_{k}^{2}+x_{k+1}^{2}+\ldots+x_{n}^{2}\right) \\
& =f(p)+\frac{1}{2} d_{p}^{2} f ; \quad k=i k d_{p} f
\end{aligned}
$$

In other words, by a local change of coordinates near p one con eliminate higher order terms in tho Taylor exp of f
Rok.: Going from $d_{p}^{2} f$ to $-x_{1}^{2} \ldots-x_{k}^{2}+x_{k+1}^{2}+\ldots$ is simply diagovalizetion of $d_{p}^{2} f$

- Linear algebra

Or to rephrase: the mouse index is the only local invariant of a nou-deg critical pt - two crit pts with the same same index are locally differ
morse lemma gives a local picture of whet f looks like near a critical pt of index b.

To be used later
Examples

1) $n=2, k=0: f(x)=x_{1}^{2}+x_{2}^{2}$

2) $n=2 \quad k=1 \quad f(x)=x_{1}^{2}-x_{2}^{2} \quad$ saddle

$$
f<-\varepsilon
$$

3) $n=3, k=2 \quad f(x)=x_{1}^{2}-x_{2}^{2}-x_{3}^{2}$

Preliminaries - of independent interest
Lemma (Hadamard)

$$
\begin{gathered}
f: \mathbb{R}^{n} \xrightarrow{c^{r}} \mathbb{R}, \quad f(0)=0 \\
\Rightarrow \exists g_{i}: \mathbb{R}^{n} \xrightarrow{c^{r-1}} \mathbb{R} \quad g_{i}(0)=\frac{\partial f}{\partial x_{i}}(0) \\
f(x)=\sum g_{i}(x) x_{i}
\end{gathered}
$$

(neon 0)
Rok. con replace \mathbb{R}^{4} by a stan-sbappod
Atlempls - what does not quite work

$$
n=1 \quad f(x)=x \cdot g(x), g \in C^{\bar{r}-1}
$$

1) f is real analytic

$$
\begin{aligned}
f(x) & =\underbrace{a_{0}}_{\vdots}+a_{1} x+a_{2} x^{2}+\ldots \\
& =x \underbrace{\left(a_{1}+a_{2} x+\ldots\right)}_{g(x) \text { converging }}=x g(x)
\end{aligned}
$$

But in geneval the Taylor exp

- need not converge
(Any power series is the T. exp of some function $-E x$)
- if it converges, need not cons to f.
E.g. It con be identically zero

2) Capitalizing on the assumption that $n=1$ set

$$
g(x)= \begin{cases}f^{\prime}(x) / x & x \neq 0 \\ f^{\prime}(0) & x=0\end{cases}
$$

Need to show the g is C^{r-1} Not entirely straight for ward Ex. Prove $f c^{\prime} \Rightarrow g c^{0}$

$$
f c^{2} \Rightarrow g c^{\prime}
$$

Rok. The condition that

$$
f \text { is } c^{l}
$$

is essential to get $g c^{0}$:
E.g.

$$
\begin{aligned}
& f(x)=x^{1 / 3} \quad \text { and defined at } 0 \\
& g(x)=\frac{x^{4 / 3}}{x}=\frac{1}{x^{2 / 3}} \leftarrow \operatorname{not}_{\text {at }} 0 \\
& g(0)=\infty
\end{aligned}
$$

Pf

$$
n=1 \quad f(x)=\int_{0}^{\text {FTC }} \frac{d}{d t} f(t x) d t=f(x)-f(0)
$$

$\underset{\operatorname{chain}}{\operatorname{cha}}=\int_{0}^{1} x f^{l}(t x) d t$

$$
\begin{aligned}
& =x \underbrace{\int_{0}^{1} f^{\prime}(t x) d t}_{g(x) c^{r-1}}=x g(x) \\
& g(0)=f^{\prime}(0) \\
& n \geqslant 1 \\
& f(x)=\int_{0}^{1} \frac{d}{d t} f(t x) d t \\
& 0 \uparrow v=\int_{0}^{1} \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(t x) \underbrace{\frac{d\left(x_{i} t\right)}{d t}}_{x_{i}} d t \\
& =\int_{0}^{1} \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(t x) x_{i} d t \\
& =\sum_{i=1}^{n} x_{i} \underbrace{\int_{0}^{1} \frac{\partial f}{\partial x_{i}}(t x) d t}_{g_{i}(x) c^{r-1}} \\
& =\sum_{i} x_{i} g_{i}(x) \quad \begin{array}{ll}
\text { Again at } 0: \\
g_{i}^{\prime}(0)=\frac{\partial L}{\partial x_{i}}(0)
\end{array}
\end{aligned}
$$

Con Assume $f: \mathbb{R}^{n} \xrightarrow{C^{r}} \mathbb{R}, r \geqslant 2$

$$
\nabla f(0)=0
$$

$$
\Rightarrow h_{i j}: \mathbb{R}^{n} \xrightarrow{c^{r-2}} \mathbb{R} \quad \text { st. }
$$

$$
\text { - } f(x)=f(0)+\sum_{i, j} h_{i j}(x) x_{i} x_{j}
$$

$$
\text { - } h_{i j}(0)=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(0)
$$

Pf. Apply Madamard's Lemma twice
Rum $\quad h_{i j} \stackrel{?}{=} h_{j i} \leftarrow$ bet we dowit

Pf of the Movse Lemma
The question is local: can work in \mathbb{R}^{n}

$$
p=0, \quad f(0)=0
$$

$f:\left(\mathbb{R}_{A}^{2}, 0\right) \longrightarrow \mathbb{R}$ In reality interabtep in gevnis

$$
\begin{aligned}
& \text { nbd of } 0 \subset \mathbb{R}^{n} \\
& f(x)=\underbrace{Q(x)+R(x) \leftarrow \text { the Hemainder }}_{d_{0}^{2} f(x)}+2 \text { thessin }
\end{aligned}
$$

Want a diffeo

$$
\begin{gathered}
\varphi:(v ; 0) \rightarrow(v, 0) \\
n \cdot d s \text { of } 0 \\
f: \varphi=Q
\end{gathered}
$$

Homotoply method: ivpportant
(Moser)y

- ref to syupl. geom clars
(0.g. The pf of

$$
\begin{aligned}
& \text { Dauborx thim, } \\
& \text { moser's thin }
\end{aligned}
$$ moser's tha,

But the pf of Mouse Leveme is a bit horder

Idea: 1) set $f_{t}=Q+t R$

$$
\begin{aligned}
& =(1-t) Q+t \cdot f \\
& t \in[0,1]
\end{aligned}
$$

Looking for a family of diffeo's $\varphi_{t}\left(\begin{array}{l}\text { nea } 0\end{array}\right) \quad \varphi_{0}=i d$

$$
\text { s.t. }(*) f_{t} \cdot \varphi_{t}=Q \quad \begin{aligned}
& \text { seemingly a } \\
& \text { wordiflupt } \\
& \text { quentidn }
\end{aligned}
$$

2) Iustead of looking for φ_{t} look for a genevolicy time-dependent v..

$$
\frac{v_{t}}{d t} \varphi^{t}(x)=v_{t}\left(\varphi^{t}(x)\right)
$$

Differentioting ($*$) in t

$$
\begin{align*}
& (*) \underset{F T C}{\Leftrightarrow} \frac{d}{d t} f_{t} \cdot \varphi_{t}=0 \\
& \Leftrightarrow \frac{d f_{t}}{d t}\left(\varphi_{t}(x)\right)+L_{v_{t}} f_{t}\left(\varphi_{t}(x)\right)=0 \\
& \Leftrightarrow \frac{d f_{t}}{d t}+L_{\sigma_{t}} f_{t}=0 \tag{x+x}\\
& \text { Appli } \varphi_{t}^{-1} \\
& \text { ov just } y=y^{t}(x) \quad \text { ptwise }
\end{align*}
$$ ov just $y=\varphi^{t}(x)$

Waut: Solve $(* *)$ for $\sigma_{t}=\left(v_{1}, \ldots, v_{n}\right) \overrightarrow{v_{t}}$ Notation $f(x)=Q(x)+R(x)$ suppress t

$$
f(x)=\sum x_{i} x_{j} \underbrace{g_{u j}(x)},\binom{=0}{\text { ato }}
$$

$$
=\underbrace{\sum x_{i} x_{j} a_{i j}}_{Q(x)}+\underbrace{\sum x_{i} x_{j} R_{i j}(x)}_{R(x)}
$$

one eq $f_{t}(x)=Q(x)+t R(x)$
under-dederminued

$$
=\sum x_{i} x_{j} a_{i j}+t \sum x_{i} x_{j} R_{i j}
$$

probobls
$(* *) \Leftrightarrow$ equal

$$
-\sum_{i, j} x_{i} x_{j} R_{i j}(x)=\sum_{i, j} x_{i} v_{j}\left(2 a_{i j}+t\left(R_{i j}+R_{i i}\right)+t_{\text {...0 }}\right)
$$

$$
-\sum_{i, j} x_{i} x_{j} R_{i j}(x)=\sum_{i, j} x_{i} v_{j}\left(2 a_{i j}+2 t \hat{R_{i j}}\right)
$$

$\underset{\sim}{\leftarrow} \underset{r_{i}(x)}{\left\{\sum_{j}^{-\sum_{j} x_{j} R_{i j}(x)}\right.}=\underbrace{}_{\begin{array}{c}\text { System of liveor } \\ \text { equatious at }(x, t)\end{array}}$ equations at (x, t)

$$
\begin{equation*}
i=1, \ldots, n \tag{24}
\end{equation*}
$$

$$
\begin{aligned}
& 2(a_{i j}+\underbrace{t \hat{R}_{i j}(x)}_{=0 \text { ato }}) \leftarrow \operatorname{mabric} A_{t}(x) \\
& \vec{r}=A_{t}^{\vec{v}_{t}} \quad \underbrace{A_{t}(0)=2 \text { Hessian }}_{\text {non-deg }} \\
& \text { nou-dy for } t \in[\rho, 1] \\
& \text { and all } x \text { neer } 0
\end{aligned}
$$

Set $\vec{v}_{t}(x)=A_{t}^{-1}(x) \vec{r}_{r}(x)$
Nuance (important): need to neche sure
$\Rightarrow\left\{\begin{array}{l}\cdot \varphi^{t} \text { is defined for } t \in[0,1] \\ 0 \varphi^{t}(0)=0\end{array}\right.$

$$
\left\{\cdot \varphi^{t}(0)=0\right.
$$

(Existend \& uniqueners is locel in t)

$$
\begin{aligned}
v_{t}(0)=0 \Leftarrow \vec{r}(0) & =0 \\
r_{i}(x) & =\sum x_{j} R_{i j}(x) \\
& =0 \text { at } 0
\end{aligned}
$$

Reason:. The existeny fime is lower semicontinuom

$$
\text { - } \infty \text { at } x=0
$$

Pictorial Pf of Lower Semi-continuity

Main Ht: $\varphi^{t}(y)$ exists and is close to $\varphi^{t}(x)$ as long as $t \in[0, T]$ if y is close to x.

Digressou - Broader Eonbext - Lectone 3
Nomal Forms \& Singularities of Functions
\rightarrow Cousider a class of objects:
(a) - matrices ($=$ linear trous f)
(b) - symmetric netr 1 = quade formes
(c) - functions neor a pt $p=0 \in \mathbb{R}^{2}$
\Rightarrow With an equiv relction coming tran a gp action="coord ehanges
(a) \cdot
$A \longleftrightarrow B A B^{-1}$
(b) • $\quad A \longleftrightarrow B A B^{\top}$
(c) $\quad t<\sim$ fo $\varphi \quad \varphi=$ ditteo neer ρ

$$
\varphi(p)=p
$$

Normal form = a simple form rouphly all (or some) objets speaving can be brought to
E.g (a) - Jordan normal form
(b) - diagokal motrix with t on 0 on diagonal
whot about (c)?
Is ther a noverd forn fon fuuchious near p ? Not really, but YES under additiouel conditious

- Fact: $d f \neq 0 \quad p=0$

$$
\Leftrightarrow \exists\left(x_{1}^{p}, \ldots, x_{n}\right) \text { st } f(x)=x_{1}+c \text { neo } c
$$

This is Ex on $p 9$
In othr wards: all fuuchoes with $d f_{p} \neq 0$ are equivalect to ecch - Her (up to a coust)

- Next step: Focus on funchas with

$$
\left.d\right|_{p}=0
$$

Morse Lenma $=$ Norwal forw provided tht $d_{p}^{2} f$ is uou-deg:
the anly invoriont is viouse index

- Ove can go fuzthar and study whot loppers shen d_{p}^{2} f degenerotes
E.g. For hol functions of one-variable Ex the novrual foum is $z^{k}+c$ For smooth functions the situation quickly becombes coupliooted subject: "Singulavities of suroot funcliony"

Ex. $f: \mathbb{R} \xrightarrow{c^{\infty}} \mathbb{R}$ near 0

$$
\begin{aligned}
& f(0)=\ldots=f^{(k-1)}(0)=0 \\
& f^{(k)}(0) \neq 0
\end{aligned}
$$

near o
$\Rightarrow \exists$ a change of variable $\varphi:(\mathbb{R}, 0) P$

$$
(f \circ \varphi)(y)= \pm y^{k}
$$

Hint: Use Madamardis Lemme
The situation becomes much more involved when $n>1$

See, l_{1}, Arnold-Varchenko-Gusein-Zode
Prof.

$$
\left.\begin{array}{rl}
\text { Hadamard } \Rightarrow f(x) & = \pm x^{k} \cdot g(x)
\end{array}\right) \quad g(0)>0
$$

§5 Some alg topology: $\frac{C W \text {-complexes }}{\text { Gevovalities }}$
References: Any good alg topology boot, e.g. Hatcher

- Attaching a cell - procedure $X=$ a reasonable top space
cmetrizeble, compact or loe compo A...)
$\psi: S^{n-1} \longrightarrow X$ cont map
Def $Y=X_{\psi} D^{n} ; \quad A_{\text {closed ball }}^{S^{n-1}}=\partial J^{n}$
is obtained from X by attaching
an n-cell (int D^{n}) along ψ

$$
\begin{array}{r}
Y=X D^{h} / \sim \quad x \sim \psi(x) \\
\sim \quad a \quad a \\
S^{n-1}=\partial D^{h} \quad X
\end{array}
$$

This is again a veasoveble top sou
In whet follows we ave interested is spoceslmaps up to hoveodopy
$\begin{aligned} & \frac{E x-F_{0} A}{\text { (Hatcher) }}: \Psi_{0} \sim \Psi_{1} \quad \text { (homotopic) } \\ & \Rightarrow X_{u_{0}} D^{n} \sim X_{u_{\psi}} D^{n}\end{aligned}$ changing Ψ within its hovolopy clan does not effect tho homology type of $X u_{\psi} D^{2}$
Def A cW-couplex (or a cell complex) is obtained inductively from
$x_{0}=$ finite collection of pts by attacking cells of increasing dimension:

$$
x_{0} \subset X_{g 2 \rho_{h}}^{f_{h}} \ldots c x_{n}=x
$$

where X_{k+1} is obtained frow X_{k} by attaching one or several $k-c e l l s$

Roma . Here, all cell-couplexes are finite

- finite \# of cells
- One is allowed to skip steps:

$$
x_{k}=x_{k+1}
$$

- $\operatorname{dim} X$ is max a the ocurrs

$$
\begin{aligned}
& \text { Ex. } \cdot \$^{h}=p t+D^{n} \\
& \text { obvions } \\
& \left.\left.\begin{array}{ll}
\text { Ex. } & S=p t+D \\
\hat{\imath} \cdot & \mathbb{R} P^{n}=p t+D^{1}+D^{2}+\ldots+D^{n} \\
\cdot & \mathbb{C} P^{n}=p t+D^{2}+D^{4}+\ldots+D^{2 n}
\end{array}\right\} \begin{array}{l}
\text { obvions } \\
\text { rototion }
\end{array}\right] \text { not-stadal }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \operatorname{clim} x=1 \Leftrightarrow x \text { is a groph }
\end{aligned}
$$

- more generally a siuplicial couplex is notuvelly a CW couplex and k-cells $=k$-simeres

A good ref for this \& the nox S is Dubrovin-Fomenko-NOVikov Port 21

Prop $X=$ cwoplex, $Y=X u_{\Psi} D^{k+1}$
\Rightarrow Y has how type of a CW complex
Not quite obvious:
In a cW complex toque cells of higher dem attached after lowe dim:

$$
\begin{aligned}
& x_{0} c x_{1} c \ldots c x_{k} c x_{k+1} c \ldots c x_{n} \\
& \sim \uparrow_{k}^{*} \\
& \delta^{k} \cong D^{k+1}
\end{aligned}
$$

Pf
Need $\Psi \sim \varphi: S^{k} \longrightarrow X_{k}$
Idea: $\quad Z>B^{n}$ $\underset{\text { top }}{\text { space }} \stackrel{\text { open ball }}{=}$

$$
\begin{aligned}
& \psi: S^{k} \rightarrow Z, \underline{k<n} \\
\Rightarrow & \exists: S^{k} \rightarrow Z \sim \psi \\
& \varphi\left(\$^{k}\right) \cap B=\varnothing
\end{aligned}
$$

Then use induction:

$$
X=X_{n-1} \cup B^{n} \cup \ldots \cup B^{n} \leftarrow \text { open balls }
$$

Pusk ψ outside B^{n} is, ete
some mivar corventions:

- $B^{4} \subset Z$ veplaced by

$$
\begin{array}{rlrl}
F: D^{4} \rightarrow Z & \text { s.t. } & F: B^{4} c \\
\text { cloved hall }
\end{array}
$$

$F\left(D^{2}\right)$ is a unice" conpactitication of B^{h}

- Need to know thent

$$
\begin{aligned}
& R: D^{n} \backslash p \rightarrow \$^{n-1} \\
& \varphi(x)=\left\{\begin{array}{l}
\psi(x), \psi(x) \notin B^{h} \\
\begin{array}{l}
F \cdot R \cdot \psi(x), \psi(x) \in B^{h} \\
\text { definod } \in P \& \psi\left(\$^{h}\right)
\end{array}
\end{array}\right.
\end{aligned}
$$

Ex.: Check $\varphi \in C^{0}, \varphi \sim \psi \in R$ hom eq.

- Not true in general:
we con heve $\psi: S^{k} \rightarrow D^{n>k}$ arto
"Peono curve" \leftarrow canuot be cl by Sards
- But $\exists \Psi^{\prime} \sim \psi \& c^{0}$-close to it
s.t. $Y^{\prime}\left(s^{k}\right) \ngtr B^{h}$

Ider: approximete ψ by a smoots mop or vother a wop which is smoothe on the poit mopped to B^{k}
Details: $D \subset B^{2}$ a slightly sualker

$$
B^{h /}\left\{\psi \mid \psi^{\prime}\right.
$$

$$
\begin{aligned}
& S^{k} \supset \underbrace{v \supset \psi^{-1}(D)}_{\text {smal } n b l}=K \leftarrow \text { conpect } \\
& \\
& \psi(U) \subset B^{n} \\
& \exists \psi^{\prime}: \$^{k} \longrightarrow Z \quad \text { s.t. } \\
& \rightarrow \\
& \psi^{\prime}=\psi \text { outside } B
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \psi^{\prime} \approx \psi \text { iuside } B \Rightarrow \psi^{\prime} \sim \psi \\
& \rightarrow \psi^{\prime}: v \xrightarrow{c^{\infty}} B \Rightarrow D \not \psi^{\prime}\left(\xi^{k}\right)
\end{aligned}
$$

U Use Weierstran to contrunct $\psi^{\prime} \ldots$
¿6 Some Alg Topology: CW Complexes
Setting How ology

- \mathbb{F} ground field; e.g: $\mathbb{F}_{2}, \mathbb{Q}$ or \mathbb{Z}
- X a CW complex

$$
e_{i}^{k} \leftarrow k-\operatorname{dim} \text { cells }, \quad i=1, \ldots, r_{k}
$$

- $C_{k}=$ free v.s. (module) over \mathbb{F} generated by e_{i}^{k}
Key pt: 3∂

$$
0 \leftarrow c_{0} \leftarrow c_{1} \longleftarrow c_{2} \stackrel{\partial}{\rightleftarrows} \leftarrow c_{n} \leftarrow 0
$$

sit. $H_{*}\left(C_{*}, \partial\right)=H_{*}\left(X_{j}, \mathbb{F}\right)$ suppress is nototia
Construction of ∂ Assume \mathbb{Z}

Note - $x_{k} / x_{k-1}=V_{r_{k}} \oint_{j}^{k}$
bouquet of r_{k}
labeled by $e_{1}^{k}, \ldots, e_{r_{k}}^{k}$
Want to defined ∂e_{i}^{k+1}

$$
\partial e_{i}^{k+1}=\sum_{j} m_{i j} e_{j}^{k} \quad \text { wit these }
$$

Attaching mop for e_{i}^{k+1}

$$
\bar{\psi}: S^{k} \longrightarrow X_{k} \rightarrow x_{k} / x_{k-1}=v S_{k}^{k} \rightarrow S_{j}^{k}
$$

collapsing other spheres
Rank For other \mathbb{F} is toke the image of $m_{i j}$ under $\mathbb{Z} \longrightarrow \mathbb{F}$

Altermetively and more formally:

- $C_{k}=H_{k}\left(x_{k} / x_{k-1}=V S_{i}^{k}\right)=\mathbb{T}^{t_{k}}$
- Consider $(\underbrace{X_{k} / x_{k-2}}_{A}, \underbrace{x_{k-1} / x_{k-2}}_{B}) \quad k$ spheres

Then $A / B \simeq x_{k} / x_{k-1}$. Long exc A seq:

$$
\rightarrow H_{k}(B) \longrightarrow H_{k}(A) \longrightarrow \underbrace{H_{k}\left(A / D_{B}\right)}_{C_{k}} \longrightarrow \underbrace{H_{k-1}}_{C_{k-1}} \rightarrow H_{*-1}^{H_{k-1}(B)} \longrightarrow \ldots
$$

So we have a connecting map in the long exact seq, and this is:

$$
\partial: H_{k}\left(X_{k} / X_{k-1}\right) \rightarrow H_{k-1}\left(X_{k-1} / X_{k-2}\right)
$$

- In what follows, it's more convenient to break it down into two stops:

$$
\xrightarrow{\partial: H_{k}\left(X_{k} / X_{k-1}\right)} \stackrel{\underset{\neq}{\delta} H_{k-1}\left(X_{k-1}\right)}{\text { connecting map }}
$$

$$
\text { in LES for }\left(x_{k}, x_{k-1}\right)
$$

Lemma $\partial^{2}=0$
Not difficubt but not entixly trivial
Pf (suttices our \mathbb{Z}) Fron FDN iuspired.
write $X_{k}^{\prime}=X_{k} / X_{k-1} . \quad B y(X)$, stortiy w! th $k+1$

$$
\partial^{2}=
$$

$$
\rightarrow \underbrace{\rightarrow \underbrace{H_{k+1}\left(x_{k+1}^{\prime}\right)}_{C_{k+1}} \underbrace{X_{k 1} / x_{k}} \underbrace{\nu H_{k}\left(x_{k}\right) \rightarrow H_{k}\left(x_{k}^{\prime}\right) \rightarrow H_{k-1}\left(x_{k-1}\right)} \rightarrow \underbrace{H_{k-1}\left(x_{k-1}^{\prime}\right) \rightarrow}}_{\partial^{2}} \rightarrow^{C_{k-1}}
$$

Loug exact sequence for $\left(X_{k}, X_{k-1}\right)$:

$$
\xrightarrow{\rightarrow H_{k}\left(x_{k}\right) \rightarrow H_{k}\left(x_{k}^{\prime}\right) \rightarrow H_{k-1}\left(x_{k-1}\right)} x_{k / x_{k-1}} \rightarrow \ldots
$$

$$
\Rightarrow \quad D^{2}=0
$$

Ex-Problem (See, e.g. DFM)
X isasinplicial conplex

$$
X \text { is a cW-complex; singlices }=\text { cells }
$$

\Rightarrow two chain couplexes

$$
(\underbrace{\left(c_{*}^{\Delta}, \partial_{\Delta}\right)} \& \underbrace{\left(c_{*}^{c w}, \partial_{k w}\right)}
$$

siupl.chain coupl complex intro abave some gencrotors.
Prove thut $\partial_{\Delta}=\partial_{c w}$

Key．Mom result：

$$
X=c W-\text { couple }
$$

Denote：$H_{*}^{c \omega}(x)=H_{*}\left(C_{*}, \partial\right)$
Could possibly depend on thew－str：

$$
x_{0} c x_{1} \subset \ldots \subset x_{n}=x
$$

Thu $H_{*}^{c w}(x)=H_{*}(x)$
homotopy inv whoteventlevar of Ham your prof

Pf－induction in dim X：
Assume done for $\operatorname{dim}<n$ ； $\operatorname{dim}=0$ cleon what does not work：the five lemina

$$
\begin{aligned}
& \rightarrow H_{*}^{\text {er }}\left(X_{n-1}\right) \rightarrow H_{*}^{c w}(X) \rightarrow H_{*}^{\text {ow }}\left(\frac{X}{x_{n-1}}\right) \rightarrow H_{x-1}^{e w}\left(X_{n-1}\right) \\
& \text { * U } \\
& \text { A } \\
& \text { い辛 } \\
& \rightarrow H_{*}\left(x_{n-1}\right) \rightarrow H_{*}(x) \rightarrow H_{x}\left(\frac{x}{x_{n-1}}\right) \rightarrow H_{*-1}\left(x_{n-1}\right)
\end{aligned}
$$

No obvious map $H_{*}(x) \rightarrow H_{*}^{c w}(x)$ making th diagram commute
Instead ：a bit mos subtle argenment still purely formal： uses only axioms for H_{*}

Actual pl:

$$
x=x_{n}
$$

- First hole For $k<n-1$

$$
\begin{aligned}
& H_{k}(x)=H_{k}\left(X_{n-1}\right) \text { long exact seq } \\
& H_{k}^{c w}(X)=H_{k}^{c w}\left(X_{n-1}\right) \text { by def }
\end{aligned}
$$

- Need to do $k=n-1, n$ for $X_{n}=X$ LES for $\left(x, x_{n-1}\right)$:

$$
\begin{aligned}
& \text { LES for }\left(x, x_{n-1}\right) \vdots \\
& 0 \rightarrow H_{n}(x) \rightarrow \underbrace{H_{n}\left(\frac{x}{x_{n-1}}\right)}_{C_{n}} \xrightarrow{\delta} \underbrace{H_{n-1}\left(x_{n-1}\right)}_{\left(Z_{n-1}^{Z_{n-1}}\right)} \rightarrow H_{n-1}(x) \xrightarrow{0} H_{n-1}\left(\frac{x}{x_{n-1}}\right)
\end{aligned}
$$

$$
H_{n}(x)=\operatorname{ker} \delta
$$

$$
\begin{aligned}
& H_{n}^{\operatorname{cw}}(x)=\operatorname{kev} \partial: \underbrace{H_{n}\left(\frac{x}{x_{n-1}}\right)}_{C_{n}} \stackrel{\delta}{\rightarrow} H_{n-1}\left(x_{n-1}\right) \rightarrow H_{n-1}\left(\frac{x_{n-1}}{x_{n-2}}\right) \\
& \text { LES far }\left(X_{n-1}, X_{n-2}\right)
\end{aligned}
$$

$$
\underbrace{H_{n-1}\left(X_{n-2}\right)}_{\quad \prime \prime} \rightarrow \underbrace{\rightarrow}_{C_{n-1}} \underbrace{H_{n-1}\left(X_{n-1}\right)} \rightarrow \underbrace{H_{n}}_{C_{n-1}\left(\frac{X_{n-1}}{X_{n-2}}\right)} \rightarrow \ldots
$$

$$
\begin{equation*}
\Rightarrow \underbrace{\operatorname{kev\delta }}_{H_{n}}=\underbrace{\operatorname{kev}_{c w}^{c}}_{M_{n}^{c w}} \quad \& \underbrace{H_{n-1}\left(X_{n-1}\right)}_{C_{n-1}}=Z_{Z_{n-1}^{c w}}^{Z_{n-1}} \tag{40}
\end{equation*}
$$

$$
\Rightarrow \quad M_{n-1}(X)=\frac{Z_{n-1}^{c w}}{\partial\left(C_{n}\right)}=: M_{n-1}^{c w}(X)
$$

Ex.: work out the details
I skipped

Ex. Use cw - str to calculate

$$
\text { - } H_{*}\left(\Sigma_{g}\right)= \begin{cases}F^{2 g} & 0 \\ \mathbb{F}^{2 g} & 1 \\ \mathbb{F} & 2\end{cases}
$$

$$
\begin{aligned}
& \cdot H_{*}\left(\mathbb{C} P^{n}\right)= \mathbb{E}, 0, \mathbb{F}, 0 \ldots \quad 0, \mathbb{F} \\
& 0,12,3
\end{aligned}
$$

- $H_{*}\left(\mathbb{R P}^{n} ; \mathbb{F}_{2}\right)=\underset{0}{\mathbb{F}_{2}} \cdots{ }_{n}^{\mathbb{F}_{2}}$

$$
H_{*}\left(\mathbb{R} P^{n} ; \mathbb{Z}\right)=? \leftarrow M_{a z d e r}
$$

§7 Main Thy \& Mouse Inequalities Lecture $401 / 14$

- $f: P \rightarrow \mathbb{R}$ morse closed monifod
- Write $I_{a}=\{f \leqslant a\}$

Thy $a<c<b$, the only crit value in $[0, b]$
$\Rightarrow P_{b}$ is obtained from P_{a} by attaching a k-dim cell for every art pt x on $\{f=c\}$, where $k=\operatorname{ind}(x)$

Con P has nomotopy type of a CW complex with one cell for each crit pt with dim = ind same for P_{a} ar $(\{a<f \leqslant b\},\{A=a\})$

In essen x:
\exists a complex $\left(C_{k}, \partial\right)$ with C_{k} qeurevated by Crit (t) over \mathbb{E} and $H_{*}(C, \partial)=H_{*}(P, F)^{k}$
$\sqrt{ }$ any field
Con (Morse inequalities)

$$
\underbrace{\mid \operatorname{\operatorname {rrit}_{k}(f)|} \geqslant \operatorname{dim} H_{k}(P ; \mathbb{F})}_{c_{k}=\operatorname{dim} C_{k}}=b_{k}(P ; \mathbb{Z}) \quad H_{k}
$$

$\frac{\text { Refining manse Inequalities }}{b_{k}}$ over \mathbb{F} set $h(t)=\sum \overparen{\operatorname{dim}_{k}(\mathbb{P})} \cdot t^{k}$ field

$$
m(t)=\sum \underbrace{\left|C_{r i} t_{k}(f)\right|}_{c_{k}} \cdot t^{k}
$$

Prop. \exists a pol ret) with coefl $\geqslant 0$ such that

$$
\begin{equation*}
m(t)=(1+t) r(t)+h(t) \tag{*}
\end{equation*}
$$

- $\frac{c_{k}-c_{k-1}+c_{k-2}-\ldots \pm c_{0} \geqslant b_{k}-b_{k-1}+\ldots \pm b_{0}}{\forall k}$

Cor $\quad \sum(-1)^{k} c_{k}=\sum(-1)^{k} b_{k}$ if: set $t=-1$

Pf of Prop
This is a puvely algebvaic fect
Complex

$$
\begin{aligned}
& C_{k}, \quad C_{k}=\operatorname{dim} C_{k} \\
& H_{k}, \quad b_{k}=\operatorname{dim} H_{k}
\end{aligned}
$$

Lemma-Ex A cowplex over a filld F conbe derowposed as a divect sulun of elementarg couplexes

$$
\begin{aligned}
& \ldots \circ \rightarrow \mathbb{k} \rightarrow 0 \rightarrow \ldots: H=\mathbb{F} \\
& 0 \rightarrow \mathbb{F} \cong \stackrel{k}{\leftrightarrows} \mathbb{F} \rightarrow 0 \ldots: H=0 \quad \begin{array}{l}
\text { Essential } \\
\mathbb{Z} \text { not } 0 k \\
\hline
\end{array}
\end{aligned}
$$

For elementary couplexes (*) \& ME obviously hold.
Additivity
\Rightarrow Generd cose
Rmk - Con reglace P by Pa everywhere

- Or even $(\{a \leqslant f \leqslant b\}$, Pf=a\} $)$ Need to tole rel. homology

88. Pf of the Main Thu and further refinements:

Some prelimary pts:

- con assume $a=c-\varepsilon<c<c+\varepsilon=b$ so the $\{f=a\} \& \quad\{f=b\}$ are very close to $\{f=c\}$
- For the sole af simplicity, assume only one critical pt on $\{f=c\}$ Call it p) $k=\operatorname{ind}(p)$ General case - similar.
- Fix a "mouse chart" V near P and a Riemmanian metric, Euclidean on vo
- $\quad X_{0}=-\frac{\nabla f}{u \nabla f u^{2}}$ defined on outside evitpts \leftarrow cut-off function near P :

$$
h=\left\{\begin{array}{l}
0 \text { near } p \\
1 \text { Div }
\end{array}\right.
$$

Replace X_{0} by $h \cdot x \cdot(\underbrace{(u t) \text { be low } a}_{\text {function of } f})$ of other critical ps
\Rightarrow. The flow of X is defined for all times

- Outride $V: \psi^{b-a}: P_{b} \rightarrow P_{a}^{a}$

$$
\begin{aligned}
\varphi^{b-a}\left(P_{b}\right) & =P_{a} \cup\left(\begin{array}{c}
\binom{\text { nod of usteble }}{\text { manifold of } p} \\
D^{k}
\end{array}\right. \\
& \sim P_{a} \cup D^{k}
\end{aligned}
$$

In fact, we proved much more:
Attaching handles
$=$ smooth analogue of attaching cells
Consider
X^{n} manifold with

$$
\begin{aligned}
& H=D^{k} \times D^{n-k}=k \text {-handle } \\
& \left.\quad \partial(H)=S^{k-1} \times D^{n-k} \cup D^{k} \times\right\}^{n-k}
\end{aligned}
$$

$$
\psi: \quad S^{k-1} \times D^{h-k} \longrightarrow \partial x \text { differ }
$$

$Y=X u_{\psi} H \leqslant$ top monitold with ∂ con be mode smooth

attaching olong
$\int^{\prime} \times D^{n-2} \quad$ What we proved is
Thm P_{b} is obteined fram P_{a} by attachivy a k - houdle for every crit pt of index k.

1 Need to knaw theit morss tugupion eaist.
Con A closed sunaoth wewitold hes a "handlebody deroupsition"
Rul Do not require k-hordles to be a Hoched befre kal-houdles, bet this con also be achieved.

Ex. \sum_{g} is obtoined from D^{2} by attactivy $2 g$-handles and one 2 -handle

Pumk Why Movse Lemme does not wotter
Near a nou.dey critical pt: $p=0$

$$
\begin{aligned}
f(x)= & \underbrace{Q(x)}_{\text {nou-deg }}+\underbrace{R(x)}_{\text {vemsinder }} \\
\nabla f= & \underbrace{\nabla Q}_{\text {conpletely dominetes }} \quad \nabla R
\end{aligned}
$$

smooth and top picture of f nean p ic coupletely determined by Q.

介soune local dynamics
§9 A Celimpse of Applicotions to Diflevential Topology

Shiping Defails

- The Key Point:
vse mouse fuuctions us houdle body decon pocitises to understend the ster of manifolds
- strategy: storkiy with $f: P \xrightarrow[\text { morse }]{\longrightarrow} \mathbb{R}$, try to simplity f to git as faw $\operatorname{li}-t(f)$ as prosible $\&$ as siuple as parible houdle-body decouposition
Bach qraune assuwption: I has a unorse furction - to prove loter
- Lower-bound" to how sinple f can be \Leftarrow Mouse inequelities
Def f is perfect if $\partial=0$ in the associated couplex: $\left|\operatorname{Crit}_{k}(f)\right|=b_{k}$ (In realíty one should also coovry about \mathbb{F} in the backqround.)

$$
\text { E.x. }\left(\begin{array}{l}
\eta \\
\vdots \\
j
\end{array}\right) \rightarrow \left\lvert\, \begin{array}{ll}
\text { perfect } & \frac{\text { Ruk }}{} \text { In fectect morse fur haa } \\
& \text { ave zove }
\end{array}\right.
$$

Ideally we wont to start will some f and then modify it to moke it perfect, but this is ravel possible

- Two preliminary steps-olways wool
$\underset{E x}{ } \rightarrow$ Con modify f to "kill" extra max's \& min's to woke sine \Rightarrow only one max \& min

E_{x}^{*}
$\xrightarrow{\text { Ex }}$ Con move lower index jots below higher index pots $f(x)<f(y) \Leftrightarrow$ ind $(x) \leqslant \operatorname{ird}(y)$ (sliding boudles)
Similar to cw-couplexes
Beyond there two steps things get tricky and om hes to -impose extra conditions
Ref. J. Milken "Lectures on the h-cobordism (ni)

Applicetiom:

1) Classification of elosed sunfees ("Elementary"; see, e.g. Hirsch) but tediens
2) The Poincevé coujecture

$$
P^{n} \sim \xi^{h} \Rightarrow P \underset{\text { howeo }}{\cong} g^{k}
$$

See Milnows book book
on maly other
sources

$$
n \geqslant 5
$$

3) Heegaard Splitting

Thm Fon evevy alosed orientoble,
\exists For every àlosed $a^{3 \text {-monitale } P}$ $\Rightarrow \quad \varphi: \Sigma_{g} \partial$ ditleo s.t.
$\left(\begin{array}{c}13 \\ \vdots \\ j\end{array}\right) \xrightarrow{\varphi}\left(\begin{array}{l}0 \\ \vdots \\ 0\end{array}\right) \quad P=M u_{\varphi} M$
$M=$ solid body with g-haudles $\partial M=\Sigma_{g}$
M M

$$
g \text {-haudles } O M=\Sigma_{g}
$$

Si

$$
\Omega \Omega
$$

Outline of the if

- $f: P \longrightarrow \mathbb{R}$ Morse with one max and one min and index 1 below index 2
- Poincevé Duality $\Rightarrow\left|\operatorname{Crit}_{1}(f)\right|=\left|\operatorname{Crit}_{2}(f)\right|$ \approx to be discurred 10 ter

Passing throng every pt of index 1 = attaching a 1 handle ovientobility

D^{3}

$" \Rightarrow$ " $\quad\{f \leqslant c\}$ is a solid body with some g houdles
Similarly for $\{f \geqslant c\}$
(Replace f by -f)

Runh. This does uot leod to a classiticotion of 3-mouitolds Prablem: inpossible to tell when $\varphi: \Sigma_{g}{ }^{D}$ and $y^{\prime}: \sum_{p}, D$ give zite to the serne P?
4) Thu P admits a Noose functia with exactly two critic pb

$$
\Rightarrow \quad P \frac{n_{n o m e o ~}^{\cong}}{S^{k}} \text { (But not diffeo) }
$$

Pf -Outline
a)

Mouse lemma

$$
\left.\begin{array}{rl}
f^{-1}([0, \varepsilon]) & \cong B^{n} \\
f^{-1}([1-\xi, 1]) \cong B^{k} \\
f^{-1}([0,1 / 2]) & \cong B^{n} \\
f^{-1}([1 / 2,1]) & \cong B^{n}
\end{array}\right\} \text { differ }
$$

$$
\Rightarrow \quad f^{-1}\left(\left[0, y_{2}\right]\right) \cong B^{k}
$$

b) Now we hove two copies of B^{k} a difteo $\varphi: S^{n-1}$ and

$$
P=B_{u}^{k} u^{n}
$$ clutching b^{n} mop $\downarrow \varphi$

c) Claim: φ exbends to a difleo

$$
\sum_{E x} \Rightarrow \mathbb{P}_{\text {defled }}^{B^{n} \rightarrow B^{n}} S^{w} \text { in serverac }
$$

V

$\$ 10$ Floen Theovy Pevipective
Lecture $5^{0 / 28}$
$f: \mathbb{P} \longrightarrow \mathbb{R}$ morse
\Rightarrow cw-couplex s.t.

$$
\operatorname{crit}_{k}(f) \underset{1-1}{ } k \text {-cells }
$$

$\Rightarrow 3$ a couplex $\left(C_{*}, \partial\right)$ s.t.

- C_{k} is genevoted by $\operatorname{Crit}_{k}(t)$

$$
\cdot H_{*}\left(C_{*}, \partial\right) \cong H_{*}(P)
$$

Oun goal is to describe ∂ explicitly withant using olg topology and CW-couplex str.
Ded. $\left(C_{*}, \partial\right)=\left(C M_{*}(f), \partial\right) \leftarrow$ new is colled the
mouse couplex of f
we heve

$$
\begin{aligned}
& \underset{\partial}{\partial x}=\sum_{\substack{ \\
C_{r i} A_{k}(f)}} m(x, y) y \\
& C_{i-t_{k-l}}(f)
\end{aligned}
$$

wort to describe the Mouse diffevertid explicitly

Idea
ind $=k$

$\operatorname{ind}(x)-\operatorname{ind}(y)=1$
11) generically
finite number of - anti-quod trojectoring from x to y

$$
m(x, y)=\#_{i}^{\#} \text { of tray } x \rightarrow y
$$

parity over $\mathbb{F}_{2}=\mathbb{Z}_{2}$ or with sighs of over \mathbb{Z}
Ex Height function on π^{2} and on (II)

$$
\partial=0
$$

$$
\begin{aligned}
& \partial x_{1}=x_{3}=\partial x_{2} \\
& \partial x_{3}=(1-1) x_{4}=0
\end{aligned}
$$

In wht follows I'll skip most of the pfs, but exptain ideas. Usually intuitively clean, but tedious
Retereuces:

- Jost
- Audin-Damian
- Banyago - Huztubise

Construction of the Norse
$\$ 10.1$ differential ∂ : Preliminaries

- While $C M_{*}(f)$ is completely determined by f, O depends on an extra str: a R. metric
- Fix a R.m. on M Cha to be from a certain opel and dense set of R.M.'.s)
Consider the antigradient flow of f :

$$
\dot{x}=-\nabla f(x): \varphi_{L}
$$

Set $\mu(x, y)=\left\{z \mid \varphi_{t}(z) \longrightarrow x t \rightarrow-\infty\right\}$

Crit
Denote the index of x by $\mu(x)$.
Note: "dim $\mu(x, y) \geqslant 1$ " if $\neq \varnothing$

Thy For a generic metric, $\mu(x, y)$ is a smooth manifold of dimension $\mu(x)-\mu(y)$

Explanation

$$
\begin{aligned}
W^{u}(x) & =\left\{p \mid \varphi^{t}(p) \rightarrow x, t \rightarrow-\infty\right\} \\
& =\text { uustoble mauifold } \\
W^{s}(x) & =\left\{p \mid \varphi^{t}(p) \rightarrow x, t \rightarrow+\infty\right\} \\
& =\text { stable manifold }
\end{aligned}
$$

Morse Lemma or just non-deg \Rightarrow

$$
\begin{aligned}
\Rightarrow\left\{\begin{array}{l}
w^{u}(x) \\
\cong D^{k}, \quad k=\mu(x)=i n d(x) \\
w^{s}(x)
\end{array}\right. & \cong D^{n-k} \\
\mu(x, y) & =w^{u}(x) \cap w^{s}(y)
\end{aligned}
$$

genevic metric $\Rightarrow w^{4}(x) d w^{s}(y)$ requives a $p f$ but not houd
$\Rightarrow \mu(x, y)$ is a manitoll \&

$$
\begin{aligned}
\operatorname{dim} \mu(x, y) & =n-\operatorname{dim} w^{\mu}(x)-\operatorname{dim} w^{s}(y) \\
& =n-\mu(x)-(n-\mu(y)) \\
& =\mu(x)-\mu(y)
\end{aligned}
$$

Rah a) $\operatorname{dim} M<0 \Rightarrow M=\varnothing$
b) $\operatorname{dim} \mu \geqslant 1$: with every pt Il coubeins a whole trajectory (Here $x \neq y$)
\Rightarrow c) $\quad \operatorname{ind}(x) \leqslant \operatorname{ind}(y)$

$$
\Rightarrow \mu(x, y)=\varnothing
$$

Ex. Height function on π^{2}

How to achive tronsversality Look at $\left(w^{4}(x) \cap\{f=c\}\right) \cap\left(w^{5}(y) \cap\{f=c\}\right)$ $f(y)<c<f(x)$, perturb the metric slightly reg above c to alter
§10.2 Digression: sliding handles
Recall from $\S 9$
Prop: P admits a morse function sot.

$$
\begin{gathered}
f(x)>f(y) \Leftrightarrow \quad \mu(y) \\
\forall x, y \in C_{\text {rit }}(f)^{\mu(x) \geqslant}
\end{gathered}
$$

Pf-outline: start with some f and modify it by moving eritiol pos by each other
Need this:
x y the all critical pts wite

$$
\begin{gathered}
a<f(y)<f(x)<b \\
\quad \mu(y)>\mu_{l}(x)
\end{gathered}
$$

\Rightarrow con modify f in $[a, b]$ so that

$$
f(y) \leq f(x)
$$

Idea

$$
\begin{aligned}
& \Sigma_{x}=\left(w^{4}(x) \cup w^{s}(x)\right) \cap f^{-1}([0, b]) \\
& \Sigma_{y}=\left(w^{k}(y) \cup w^{s}(y)\right) \cap f^{-1}([a, b])
\end{aligned}
$$

Generically

$$
\begin{gathered}
\sum_{x} \cap \sum_{y}=\varnothing \\
\mu(y)>\mu(x)
\end{gathered}
$$

modify f in a id $N>\sum_{x}$ (or N, \sum_{y}) keeping if the some near $\partial \Sigma^{y}$ \Rightarrow con give x any value in (a, b) by modifyin how f changes along integral curves of ∇f
N is sketched unrealistically.
A better way:

Con change f so the

- Uumeins the some near ∂M
- same - 8 t up to scaling
- any value $f(x)$ in (a, b)
\$10.3 more modern \& different perspective

$$
M(x, y)=\text { the space of perometrized }
$$

$$
\text { trajertoring } t \mapsto \varphi^{2}(z)
$$

$\}^{z}$ from x to y trajutory \longleftrightarrow initial condition

$$
\varphi^{t}(z) \longleftrightarrow z=\varphi^{\bullet}(z)
$$

iR
Time shit: $t \mapsto \varphi^{t}(z) \quad z \mapsto \varphi^{\top}(z)$

$$
t \stackrel{s}{\mapsto} \varphi^{t+T}(z)
$$

\Rightarrow free \mathbb{R}-action on $M(x, y), x \neq y$
Spar of unpravametrized trajectories

$$
\hat{\mu}(x, y)=\mu(x, y) / \mathbb{R}
$$

Con $\hat{\mu}(x, y)$ is a smooth manifold of $\operatorname{dim} \mu(x)-\mu(y)-1$
E.g. $\mu(x)=\mu(y)+1 \Rightarrow \hat{\mu}$ is disco

Note. μ \& $\hat{\mu}$ ave usually non-con identified with $\mu \cap\{f=c\}$ $f(y)<c<f(x)$ \uparrow

For a gevent metric:
The $\hat{\mu}(x, y)$ has a compoctification formed by broken trajectories
 such trajechovies

$$
\begin{aligned}
& x=z_{0} \leadsto z_{1} \leadsto \ldots \leadsto z_{2}=y
\end{aligned}
$$

form a compact manifold with corners.

Rok

$$
\begin{aligned}
& f(x)>f\left(z_{1}\right)>\ldots>f(y) \\
& \mu(x)>\mu\left(z_{1}\right)>\ldots>\mu(y)
\end{aligned}
$$

Con.

$$
\begin{aligned}
& \mu(x)=\mu(y)+1 \\
\Rightarrow & \hat{\mu}=\text { comport } \Rightarrow \text { finite collection } \\
\Leftrightarrow & \underline{o f} \text { pts } \\
\Leftrightarrow & \frac{\text { finite wong traj from } x \text { to } y}{(\text { for a generic metric) }}
\end{aligned}
$$

§10.4 Definition of ∂
Fix a geneur metric so that all the thurs hold

$$
\mu(x)=\mu(y)+1
$$

- Over \mathbb{Z}_{2}, Set

$$
\begin{gather*}
\mathbb{Z}_{2} \ni m(x, y)=|\hat{\mu}(x, y)| \bmod 2 \\
\partial x=\sum_{y} m(x, y) y \tag{*}\\
\mu(x)=\mu(y)+1
\end{gather*}
$$

- Over \mathbb{Z} (and hence on ring) Need to take into account orientations Fix orientation of $T_{x} w^{u}(x) \quad \forall x$
\Rightarrow coorientetion of $T_{x} w^{s}(x)$

$$
\Rightarrow\left\{\begin{array}{l}
\text { orientations of } w^{u}(x) \\
\text { coorientetions of } w^{s}(x)
\end{array}\right.
$$

\Rightarrow orientations of

$$
\mu(x, y)=w^{u}(x) \cap w^{s}(y)
$$

- When $\mu(x)=\mu(y)+1$
$\mu(x, y)=$ disj union of finite \#
of trajectories
- Each trojectoug Xis a so oriented by the flow
\Rightarrow Two orientations on γ $\operatorname{sigh}\left(X^{\prime}\right)=\left\{\begin{array}{ll}+1 & \text { orientations agree } \\ -1 & -\end{array}\right.$ - disagree $\quad y$
And

$$
\frac{m(x, y)=\frac{\sum \operatorname{sign}(\gamma)}{x \stackrel{\gamma}{\sim} y}}{\frac{m}{x}}
$$

*: $\partial x=\sum m(x, y) y$

$$
w^{\{ }\{y) \cap w^{4}(x)=\gamma_{1} \cup \cup \gamma_{2}
$$

Ex. Do there:

\$10.5Checking that $(C M(f), \partial)$ is a couplex
The $\partial^{2}=0$
Pf. For the soke of simplicity over \mathbb{Z}_{2}

$$
\begin{aligned}
& \partial^{2} x=\partial \sum_{y} m(x, y) y \\
& \mid \mu(x)=\mu(y)+1 \\
& \mu(y)=\mu(z)+1
\end{aligned}=\sum_{y} m(x, y) \sum_{z} m(y, z) z \quad\left(\sum_{z} m(x, y) m(y, z)\right) z .
$$

$\bmod 2$
\# of broken trajectories (one break) from x to $z(\bmod 2)$
But $\hat{M}(x, y)$ one -din manifold its cowpachifiefion: $\$_{\text {or }}$ I closed $\overrightarrow{i r t e r v a l}$
\Rightarrow broken trojectories come in pairy
\Rightarrow \# is even

$$
\begin{aligned}
& \Rightarrow \sum_{y} m(x, y) m(y, z)=0 \bmod 2 \\
& \Rightarrow 0^{2}=0
\end{aligned}
$$

set $H M_{*}(f)=H_{*}(C M(f), \partial)_{j}$ fixed coefficient
Tho (Morse theory)

$$
H M_{*}(f)=H_{*}(P)
$$

Rok. As a consequence, P.L.s is independent of $f \leftarrow$ con be proved directly

- We hove of ready seen some consequences: Morse inequalitios, etc
$\left.\begin{array}{ll}\text { Outline of the pf: } & \text { Ref } \\ \text { "Classical" Morse theory }\end{array} \right\rvert\,$ - Banyaga-Murkbise
Morse function $f \leadsto$ Cllulor derowjositi.

$$
\text { on } M
$$

$$
\text { of } M
$$

$$
\text { Crit }_{k}(f) \leadsto w^{u}(x) \leftarrow{ }^{u} c e l l s "
$$

$$
\operatorname{cri}_{1} t_{k}(f)
$$

$$
\begin{aligned}
& \frac{\text { Morse complex }}{C M_{k}(f)}<\sim_{\partial_{M}}=\frac{\text { Cellular complex }}{\text { of } M: C(M)} \\
& \Rightarrow \partial_{c w} \\
& H_{*}\left(C M(f), \partial_{M}\right.=\underbrace{H_{*}\left(C(M), \partial_{c w}\right)}_{H_{*}(M)}<
\end{aligned}
$$

EII. Calulations of $H_{*}(M)$ using Monse homology; Applicotions

$$
H_{*}(M)=H_{*}\left(H M_{*}(f), \partial_{M}\right)
$$

- very difficmet

Worls well whan $\partial=0<$ to degl wiM1 in general
Examples (over \mathbb{Z} or \mathbb{F})

1) $\frac{\sum_{g} \text { on } \pi^{2}}{x}$

$$
\begin{aligned}
\partial x= & y_{1}+-y_{1} \\
& +y_{2}+-y_{2} \\
= & 0
\end{aligned}
$$

z
unstoble trej of $y_{1} \& y_{2}$ ohould come from x

$$
\partial y_{1}=0=\partial y_{2}
$$

$$
\begin{array}{ll|}
\Rightarrow & H_{*}\left(\Sigma_{g}\right)=\left\{\begin{array}{ll}
\mathbb{F} & k=2 \\
\mathbb{F}^{2 g} & k=1 \\
\mathbb{F} & k=0
\end{array} \sqrt[\text { Ovientations: }]{ }\right. \text { Ws(og) } \\
\hline y
\end{array}
$$

2) $\mathbb{C} \mathbb{P}^{k}$ (over \mathbb{Z} or \mathbb{F})

$$
\begin{aligned}
\mathbb{C} P^{n} & =\left\{\left.\left(z_{0}: \ldots: z_{n}\right)\left|\sum\right| z_{j}\right|^{2}=1\right\} \\
f(z) & =\sum \lambda_{j}\left|z_{j}\right|^{2} \\
\lambda_{0} & <\lambda_{1}<\ldots<\lambda_{n}
\end{aligned}
$$

Ex. a) Crit $(f)=$ "coordinate axes"

$$
=\left\{(0, \ldots, 0,1,0, \ldots, 0)=x_{j}\right\}
$$

b) In coordinates

$$
u=\left(u_{0, \ldots}, u_{j-1} 1, u_{j+1} \ldots, u_{n}\right\}
$$

At x_{j}

$$
\begin{gathered}
d_{x_{j}}^{2} f=\left(\lambda_{0}-\lambda_{j}\right)\left|u_{0}\right|^{2}+\left(\lambda_{i}-\lambda_{j}\right)\left|u_{1}\right|^{2}+\ldots \operatorname{skip}\left(\lambda_{j}-\lambda_{j}| \rangle\right. \\
\ldots+\left(\lambda_{n}-\lambda_{j}\right)\left|u_{n}\right|^{2}
\end{gathered}
$$

$\Rightarrow f$ is morse \& $\mu\left(z_{j}\right)=2 j \leftarrow z_{j}$ is a crumples

$$
\Rightarrow \quad H_{k}\left(\mathbb{C P}^{4}\right)= \begin{cases}\mathbb{F} & 0 \leqslant k=2 j \leqslant 2 n \\ 0 & \text { otherwise }\end{cases}
$$

3) $\mathbb{R P}^{h}$ over \mathbb{Z}_{2}

Similarly $\mathbb{R} P^{n}=\left\{\left.\left(y_{0}: \ldots: y_{n}\right)\left|\sum\right| y_{j}\right|^{2}=1\right\}$

$$
f(y)=\sum \lambda_{j}\left|y_{j}\right|^{2}
$$

Ex. similarly
a) $x_{j}=(0, \ldots, 0,1,0, \ldots, 0) \leftarrow$ Critical ph
b) Hessian : similar - same colulation

$$
\Rightarrow \mu\left(x_{j}\right)=j
$$

c) $\curvearrowright=0$ over \mathbb{Z}_{2} : exactly two trajectories from x_{j+1} to x_{j} (for the round metric)

Rms. Over \mathbb{Z}, harder -orientations
4) Hamiltonian $\$^{\prime}$-actions or torus $01 / 21$

P a syuplectir wouitold (cloxed) actions $H: P \rightarrow \mathbb{R}$ Hamiltonion geveratis on ${ }^{\$ 1}$-action

$$
\operatorname{Crit}(H)=\text { Fixed } p h=P^{f^{\prime \prime}}=\{x\}
$$

$\begin{aligned} & \text { assume iso bbed }\end{aligned} \left\lvert\, \begin{aligned} & \frac{\text { Details: }}{\text { Last yeor syurl }} \\ & \text { geometry clans }\end{aligned}\right.$ $d_{x}^{2} H$ have even index
$\Rightarrow \partial m=0 \quad$ Similou to epk

$$
\operatorname{dim} H_{k}=\left|\operatorname{crit}_{k}(t)\right|
$$

- Worls for a lot of intevesting manitolds:

Flag mavitolds, Graesmarnions, syuplectic tovic monitolds, éte

- Same for π^{r}-aclions with moment wap $\left(H_{1}, \ldots, t l_{r}\right)$
set $H=\sum \lambda_{j} H_{j}$ - generolizetion of $\mathbb{E} P^{k}$

Two Textbook Applications

1) The künneth founula for monitolds:

Po, P_{1} two closed manifolds

$$
\Rightarrow \quad H_{*}\left(P_{0} \times P_{1}\right)=H_{*}\left(P_{0}\right) \otimes H_{*}\left(P_{1}\right)
$$

field
Pf. fo a morse fuvchien on P_{0}

$$
\cdot f_{1}-\quad-\quad-P_{1}
$$

- Dick generic metro \Rightarrow the prods A we tor o. $P_{0} \times P_{1}$ is geod for us

$$
C M_{*}\left(f_{0}+f_{1}\right)=C M_{*}\left(f_{0}\right) \otimes C M_{*}\left(f_{1}\right)
$$

as complexes
Algebraic Künneth sa needs a bield

Rush. Likewise over \mathbb{Z} on a ring but the formula is more involved \leftarrow algebra
2) Poincové Duality

I smooth closed mouitold, $\operatorname{dim} P=n$

$$
H^{k}(P) \cong H_{n-h}(P) \text { : over } \mathbb{Z}_{2}
$$

- over other fields if orient table
Cor: : $\quad b_{k}=b_{n-k}$
Pf f mouse $\Leftrightarrow-f$ is mouse

$$
\nabla f \quad \nabla(-f)=-\nabla f
$$

interval en ives
some curves but troweled backward

$$
\left.\begin{array}{rr}
\operatorname{Crit}_{k}(f) & =\operatorname{Crit}_{n-k}(-f) \\
\Rightarrow & \operatorname{CM}_{k}^{*}(f) \\
\partial_{M}^{*}
\end{array}\right\}=M_{n-k}(-f)
$$

use the harris

$$
\begin{aligned}
& H^{*}(C):=H_{*}\left(C^{*}\right)=H_{*}(C)^{*} \text { over a kiel } \\
& \Rightarrow \underbrace{H_{*}\left(C M^{*}(f), \partial_{M}^{*}\right)}_{H^{*}(P)}=\underbrace{H_{*}\left(C M(-f), \partial_{M-x}(-f)\right)}_{H_{n-*}(P)} \\
& \text { Mass Theory for }(-f) \sum_{0}^{\nabla}
\end{aligned}
$$

$\$ 12 \frac{\text { Existence of Mouse functions }}{\text { Pint in }}$ Port I: via Trousversality the
P closed manifold, $k \geqslant 2$ l.g. ∞
Tho mouse functions form an open and cleuse set in $C^{k}(P)$
Cor Every manifold admits a morse function. Moveoven, every function con be C^{k}-approximal el by mouse fractions.
well give two pts
Pf 1: based. on Thonsversolily

$$
\text { Pf } 2 \text { (Outline) - divest }
$$

Revisiting the definition of
Mouse funclion

$$
\begin{aligned}
f: P \rightarrow \mathbb{R} & \Longleftrightarrow d f=\text { sechion of } T^{* P} \\
& \Gamma_{f}=\text { groph }(d f) \\
x \in \operatorname{Crit}(f) & \Longleftrightarrow d f(x)=0 \\
& \Longleftrightarrow x \in \mathbb{R}_{f} \cap P \leftarrow \text { zevo section }
\end{aligned}
$$

Claim x is non-deg $\Leftrightarrow \Gamma_{f}+P$ at x

$$
(T_{x} P+T_{x} P=\underbrace{T_{(x, 0)} T^{*} P}_{T_{x} P\left(T_{x}^{*} P\right.}
$$

Pf.

- $T_{r} P_{f}=\operatorname{groph}\left(A: T_{x} P \rightarrow T_{2}^{k} P\right)$

$A=$ lineavizgtion of $s: y \rightarrow d f(y)$ at x (77)

$$
\begin{aligned}
T_{x} \Gamma_{f}+P \text { at } x & \Leftrightarrow \operatorname{ker} A=0 \\
& \Leftrightarrow A \text { is outo } \\
& \Leftrightarrow A \text { is nou-deg }
\end{aligned}
$$

- A is essentially the Hessicu

$$
\begin{aligned}
& d_{x}^{2} f(v, w)=\underbrace{A(\sigma)}_{T_{x} P}(w) \\
& T_{x}^{*} P
\end{aligned}
$$

$$
\underbrace{A \text { is uou-dy }}_{\Leftrightarrow T_{x} P_{f} \lambda P} \Leftrightarrow d_{x}^{2} f \text { is non-dey }
$$

Con f is Mouse

$$
\Leftrightarrow \Gamma_{f} \nleftarrow P
$$

Idea of the rf of \exists marse functions

- start with soure fo. Need to approx byamouse functia f
- Tronsversality thu \Rightarrow dfo con be approximualed by $\alpha \in \Omega^{l}(P)=$ sechions of $\tau^{*} P$ so the Γ_{α} a P. Difficulty: Need $\alpha=d f$

Transuesality Theorems: Review
(Withat pts) \& Pf I

Rel. E.g. Arnold-Varcherko-Gusein-Zade or many other text books

Definitions Based on Sardis Lemma

$$
\begin{aligned}
& F \star Z \text { if } \\
& \operatorname{DF}\left(T_{x} X\right)+T_{F(x)} Z=T_{F(x)} Y \\
& \{\forall x \in X \text { with } F(x) \in Z
\end{aligned}
$$

Ex $\operatorname{dim} X+\operatorname{dim} Z<\operatorname{dim} Y \quad F ৯ Z$ Open

$$
\Rightarrow \quad F(x) \cap Z=\varnothing
$$

Key pt: Almost all $F A Z$ of hen even extra constraints on F

Ex. $L_{0}, L_{1} \subset \mathbb{R}^{3}$ two cubeddol loops For almost all $v \in \mathbb{R}^{3}$

$$
\left(L_{0}-\sigma\right) \Omega L_{1}=\varnothing
$$

$\xrightarrow{\text { Hint: }} \cdot L_{0} \times L_{1} \xrightarrow{\Phi} \mathbb{R}^{3}$

$$
(x, y) \longmapsto x-y
$$

- $\left(L_{0^{-}} v\right) \cap L_{L} \neq \varnothing \Leftrightarrow \exists x, y$ st. $x-v=y$

$$
\begin{aligned}
& \Leftrightarrow x-y=v \\
& \Leftrightarrow v \in \Phi\left(L_{0} \times L_{1}\right)
\end{aligned}
$$

- $\operatorname{dim}\left(L_{0} x L_{1}\right)=2, \operatorname{dim} \mathbb{R}^{3}=3$

Sardis $\Rightarrow \Phi\left(L_{0} \times L_{1}\right)=$ zero meagn nowhere dense closed
\Rightarrow For an open full measne set in \mathbb{R}^{3}

$$
\left(L_{0}-v\right) \cap L_{1}=\varnothing
$$

A sequence of settings increasing constrains or F : trousversdity theoverus
Setting 1.
This F内Z for open $X \xrightarrow{F} Y$
v and dense set in

$$
c^{k}(x, y)
$$

Xclosed manifold at least $1 \leqslant k \leqslant \infty$
Rok. Here and below it os clear that the condition is open in C^{k} tor.

- Pf is based ar sardis lemma
- If $F: X \longrightarrow Y$ we soy $X \underset{X^{2}+z}{ }$

Setting 2

$$
\begin{array}{ll}
Y=X \times K>Z, & F: X \rightarrow K \\
\Gamma_{F}: x \hookrightarrow Y & x \longmapsto(x, F(x))
\end{array}
$$

Thy 2 P A Z For an open \& deus set in $C^{k}(X, k)$

Much mos restrictive
clan: $\Gamma_{F}: X \hookrightarrow Y=X \times K$

$$
\begin{equation*}
\underbrace{\pi \cdot P_{F}=i d}_{\text {section of }} \tag{80}
\end{equation*}
$$

$\frac{\text { Setting } 3}{z \subset Y}$:

Tm 2介
same but

Thm3 shz For on open and dense set of C^{k}-sections of π.

Rok. The clan of sections is much smaller thou all $C^{k}(X, Y)$

Outlive of Tho \Rightarrow Thu 3
Need density
$s_{0}: X \rightarrow Y$ a given section
$F: X \rightarrow Y, F \dot{ } \quad F \quad C^{k \geqslant 1}$-close to 1_{0}
 not a section: $\pi \cdot F(2) \Rightarrow x$

$$
\begin{aligned}
\varphi: x & \longmapsto \pi \cdot F(x) \\
X & \longrightarrow X
\end{aligned}
$$

$\frac{\text { Claim }}{\left(E_{X}\right)} \varphi: X \rightarrow X$ a differs, c^{k} close to id
Replace F by $s:=F_{0} \varphi^{-1} \times z$

$$
\approx 1_{0}
$$

Rum Itis esseutioal thet

$$
\varphi \approx^{c^{k \geqslant 1}} i d
$$

Not enough $\varphi \approx{ }^{\circ}$ id

Setting 4: Jet Trensversality $\frac{\frac{\text { hoot }}{0 / 2 / 26}}{\text { 0/2 }}$
Next step - incorparoking
Lecture 7
A very basic minimalist version

$$
J^{\prime} x=T^{*} X \times \mathbb{R} \longrightarrow x
$$

$j^{\prime} f=(d f, f): x \rightarrow J^{\prime} x$ a section $Z \subset J^{-1} X$ a proper submenifild
The \& $j^{1} f$ i Z for on open and dense set of $f \in C^{k}(x)$ $k \geqslant 2$
(Con) Con replace $J^{\prime} x$ by $T^{*} X$: af $A Z \subset T^{*} X$ for an open and dense set $f \in C^{k}(x)$ $k \geqslant 2$
Pf Replay $Z \subset T^{*} x$ by $Z x \mathbb{R} \subset J^{\prime} x$ $d f$ by j'f

Rub much more limited clan of
mops:
Seckious of $T^{*} x=\Omega^{\prime}(x)$

$$
\alpha \in \Omega^{\prime}(x)
$$

$\alpha=d f \Rightarrow \alpha$ is closed $\Rightarrow \alpha$ is exact
$d \alpha=0$ a condition
out the derivative

Pf of the thun on Mouse function:
e set $x=P, \quad z=P \subset T^{*} P$ zero sectia

- f mouse $\Leftrightarrow d f$ क $Z=P$ in $T^{*} P$
open a dense condition in $C^{k \geqslant 2}(P)$

Move details on tronsversality approach, by passing Jet Trousversality:

Banyaga - Hurtubise
based on the idea in this pf.

Wu the pf of ordinary tronsversality
Following Guillemin - Pollock
Assume $X \& Y$ are closed for the sole of simplicity

$$
\Phi \pitchfork Z \Rightarrow \Phi_{e} \pitchfork Z \text { foil } \quad \text { almost }
$$

Hint:

$$
M=\Phi^{-1}(z)=\text { smooth sulmanitold of } X \in E
$$

Claim: $\Phi_{e}+Z \Leftrightarrow e$ is a veg value of W/M
Lemma \Rightarrow Trousv. Thu

$$
\begin{aligned}
& Y=\mathbb{R}^{4}, E=\mathbb{R}^{k} \\
& \Phi(x, e)=F(x)+e
\end{aligned}
$$

I is a submersion (already a th second factors)

$$
\Rightarrow \text { 玉कz } \quad \forall z
$$

$\Rightarrow \Phi_{e}+z$ for almost all e
Toke e lose to $0 \nabla_{0}$

Now when Y is confect
Toke $Y \hookrightarrow \mathbb{R}^{n}$

- Cove only about sural $e \in B^{4}(\varepsilon)$
- Toke $F: X \rightarrow X$ and extend to to a enburuersion

$$
\begin{aligned}
& \Phi: X \times R^{4} \longrightarrow Y \\
& \Sigma_{U} / \pi
\end{aligned}
$$

such live $F(x)+e$ is good

- Finish the of as before
§ 13 Existence of Mouse functions

$$
\begin{array}{r}
\text { Part II: via Height Functions } \\
\text { Lecture } 8 \\
0 / 28
\end{array}
$$

Recall
P closed manifold, $k \geqslant 2$ leg. ∞
Thm 1 mouse functions form an open and cleuse set in $C^{k}(P)$

$$
\begin{aligned}
\exists \quad P \hookrightarrow \mathbb{R}^{m}, & \text { from now on } \\
& P \subset \mathbb{R}^{m}
\end{aligned}
$$

Denote by h_{v} the proj to v. \mathbb{R} :

$$
v \in S^{m-1}
$$

Egg. The heigh function h

The 2 For an open dense (full measure) subset of s^{m-1}, h_{v} is Morse

Thm2 \Rightarrow Thm1:

Toke $v \in \m close to $e_{m+1} \subset \mathbb{R}^{m+1}$

$$
\begin{aligned}
& \Rightarrow \quad h_{v} \approx h \quad \text { sochet } h_{v}: P \rightarrow \mathbb{R} \\
& f=h: P \longrightarrow \mathbb{R} \\
& h_{0}: \mathbb{P} \xrightarrow{S S} \mathbb{R}
\end{aligned}
$$

Runh. Milnoris "Mouse theony":
A veloted but difderent argument

$$
\begin{gathered}
\mathbb{M} \underset{\mathbb{R}^{m}}{\overrightarrow{\operatorname{dist}_{p}^{2}}} \mathbb{R} \\
\operatorname{dist}_{p}^{2}(x)=u x-p \|^{2}
\end{gathered}
$$

is movre for almost all p.

Pf of Thu 2

* Particular case $P=$ hypersurtece:

$$
\mathbb{P}^{n} \subset \mathbb{R}^{n+1}
$$

$G: P \longrightarrow s^{\text {sh }}$ the Gaurs map

$$
x \longmapsto v_{x}
$$

<unit outer nounal

Prop h_{σ} is Mouse $\Leftrightarrow \pm \sigma$ are reg values of G
$\|,<$ Sards
Thu 2 when P is ingerssuzfece
Pick: $v \in \$^{n} \quad v=e_{n+1} \leftarrow$ convenient

Pf of the proposition

$$
G(p)=v=e_{n+1}
$$

Suffices to show:

$$
\begin{aligned}
& D G: T_{p} P \rightarrow T_{\sigma} S^{h} \\
& \text { is auto }{ }^{\circ} \\
& \text { From now on } \\
& v=e_{n n}, h_{v}=h
\end{aligned}
$$

Now we can assume locally

$$
\begin{gathered}
P=\operatorname{groph}\left(g: \mathbb{R}^{n} \rightarrow \mathbb{R}\right) \\
g=h \\
\mathbb{R}^{h} \quad T_{p} P=\mathbb{R}^{k} \\
p=0
\end{gathered}
$$

The second furdower hal form

$$
\begin{aligned}
& \left(\mathbb{I}_{p}: T_{p} p \operatorname{Ti}_{p} p \rightarrow \mathbb{R}\right): d e t d_{p}^{2} g \\
& \mathbb{I}_{p}=d_{p}^{2} h
\end{aligned}
$$

Goal: velate Ip to $D G_{p}$
Preliminary steps:

- Fist of all
con assume g is a quadratic form

$$
g(x)=I_{p}(x)+\underbrace{\cdots G}_{\text {do wot after }}
$$

\Rightarrow Can drop from the calcultivin

- Con recycle \mathbb{R}^{2} as a local chant neon $v=N P \in S^{2}$ using orthosaval proj $\mathbb{R}^{h+1} \rightarrow \mathbb{R}$
 oblong x_{n+1}

$$
\begin{equation*}
\text { The horizontal } \text { Re }^{2} \tag{90}
\end{equation*}
$$

$$
\begin{aligned}
& g=\frac{1}{2} \underbrace{\langle A x, x\rangle}, \quad A=A^{\top} \\
& \Pi_{p}(x) \text { Not really wing }
\end{aligned}
$$

- Key Claim $D G p=-A$

$$
\Rightarrow\left(p \text { is a veg point of } \Leftrightarrow \Leftrightarrow \mathbb{I I}_{p}\right. \text { is non. dy) }
$$

exactly what we need
Pf of the claim

$$
\begin{aligned}
\rightarrow V_{x} & =\frac{(-\nabla g(x), 1)}{\sqrt{1+|\nabla g(x)|^{2}}}
\end{aligned} \begin{aligned}
\text { calculus } \\
\text { contr } 23 B
\end{aligned}
$$

\Rightarrow at $p: D G=-A$
This finishes the pf in the case where P is a hypersurtace

Seneral case: $P^{n} \subset \mathbb{R}^{n+k+1=m}$

The Gauss map and Nound bundle

$$
\begin{aligned}
N_{P} & =\frac{\text { novmal bundle to } P}{P} \subset \mathbb{R}^{h} \times \mathbb{R}^{k} \\
& =\left\{(q, v) \in P_{x} \mathbb{R}^{h} \mid v \in T_{q} P \text {, novmal at } \text { to } P\right\} \\
& \operatorname{dim}_{p} N_{p}=m=n+k+1
\end{aligned}
$$

$S N_{P}=M=$ the unit nowmal burclle

$$
=\{(q, v) \mid \| v u=1\} \subset N_{P} \xrightarrow{\longrightarrow}
$$

should thitik of M as the boukdavy of infinitesimally suall nbd of P

Rumk: P hypersufere $\Rightarrow M=$ two copiss of P : inword \& ou tword

$$
\operatorname{dim}\left(M=S N_{p}\right)=m-1
$$

Gans mep : $G: M=S N_{p} \rightarrow \delta^{m-1}$

$$
\left(q_{2} v\right) \stackrel{Q}{\longmapsto} v
$$

(v) s^{m-1}

Prop $\pm v$ are reg values of $G \Leftrightarrow h_{v}$ is Mouse

$$
\operatorname{Thm} 2 \underbrace{\| / \operatorname{sonds}^{\pi}}_{\text {base pbs }} \underbrace{\left(G^{-1}(v) \cup G^{-1}(-v)\right)}=\operatorname{Crit}\left(h_{\sigma}\right)
$$

Pf (out line)
As before con assume $v=e_{m} \leftarrow$ vertiod ven.
write $g=(F, h)$ the height function
By contraction $g(q)=0, D g(q)=0$
Note: as before cove only about the quadratic pert of g

What is DC?

$$
\begin{aligned}
& \left(\left.G\right|_{\text {SN q }} P=i d\right) \\
& \text { does wot voter } \\
& h(x)=\frac{1}{2}\langle A x, x\rangle \\
& \text { some colulatives } \\
& \text { as for hyper res er }
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow D G_{q} \text { is auto } & \Longleftrightarrow A \text { is nou-deg } \\
& \Longleftrightarrow d_{q}^{2} u \text { is nou-deg }
\end{aligned}
$$

An application (added)

$$
M \subset \mathbb{R}^{k}
$$

$$
h_{v}(x)=\left\langle x_{v} v\right\rangle: p v o j \text { to } \sigma \mathbb{R}
$$

$\downarrow f$ \mathbb{R}^{h}
\mathbb{R}
whit we hove shown is that:
For almost all $v \in \mathbb{R}^{L}$

$$
f+h_{v} \text { is norse on } M
$$

Cor Fou a dense set of p

$$
x \mapsto \mid p-x \|^{2} \text { is morse }
$$

Pf.

$$
\begin{aligned}
& f(x)=\|x\|^{2} \\
& \begin{aligned}
f(x)+h_{v}(x) & =\langle x, x\rangle+\langle x, v\rangle \\
& =\left\langle x+\frac{1}{2} v, x+\frac{1}{2} v\right\rangle-\frac{1}{4}\|v\|^{2}
\end{aligned} \\
& \Rightarrow\left\langle x+\frac{1}{2} v, x+\frac{1}{2} v\right\rangle \text { is house }
\end{aligned}
$$

Con replace 0 by any pt.

Next Lecture - Short
§14. Digression: Cup Product in Morse homology

Rel: Jose
Precall
skipping details
quite technical

* P any versouble space
$\Rightarrow H^{*}(P)$ is a graded unital alg Product: cup product "u"
Egg. I a manifold, in $H_{d R}^{*}(\underline{P})=H^{*}(P ; \mathbb{R})$

$$
[\alpha] \cup[\beta]=[\alpha \wedge \beta]
$$

* Assume now P^{n} is a closed manifold Intersection product

$$
\begin{aligned}
& a \cdot b:=P^{-1}(P D(a) \cup P D(b \mid) \\
& \rightarrow|a \cdot b|=|a|+|b|-n \\
& \rightarrow \text { unit }=[M] \\
& {\underset{c}{*}+}_{H_{k}(P) \otimes H_{*}(P) \rightarrow H_{*}(P)}^{e_{+k-n}}
\end{aligned}
$$

Conceptually $a=[A]$

$$
\begin{align*}
& a=[A J \tag{95}\\
& b=[B]
\end{align*} \leadsto a \cdot b=[A \cap B]
$$

Key pt: the intersection produce A has a simple interpretation in Morse theory.
Even two
setting: $f: P \rightarrow \mathbb{P}$ mouse

$$
\begin{aligned}
\Rightarrow \quad & C M_{*}(f) \text { mouse complex } \\
& M M_{*}(f)=H_{*}(p) \text { mors hom }
\end{aligned}
$$

Interpretation I: $\operatorname{HM}_{*}(f)$ is a module overs

$$
H_{*}(P) \otimes H M_{*}(f) \rightarrow H M_{*}(f) \quad H_{*}(P) \stackrel{P D}{=} H^{*}(P)
$$

Define on "action" of $H_{*}(\mathbb{P})$ on $H M_{*}(f)$

$$
\begin{aligned}
& b \in M_{*}(P), \quad b=\left[B^{\top}\right. \text { a cucle } \\
& a \in H M_{*}(f), a=[A], \underbrace{A=\sum \beta_{i} x_{i}}_{\text {mouse cycle }} \in\left(M_{*}(f)\right. \\
& B \bullet A:=\sum \beta_{i} \underbrace{\left(B \cdot x_{i}\right)}_{r} \text { need to def this }
\end{aligned}
$$

Think of B as a generic, immerse

$$
\begin{align*}
B \cdot x & =\sum\langle B \cdot x, z\rangle z \\
z & \text { Discuss } \tag{96}\\
\langle B \cdot x, z\rangle= & |\mu(x, z) \cap B|^{\prime \prime} \tag{*}\\
\mid \mu(z) & =\mu(x)-\operatorname{codim} B \mid(*)
\end{align*}
$$

$$
\langle B \cdot x, z\rangle
$$

$$
=\underbrace{|\{x \sim \underset{\sim}{u} z \mid u(0) \in B\}|}_{\text {a finire set whou }}
$$

(*) hold \& B is geveric
T hou

$$
\partial_{M}(B \cdot \omega)=B \cdot \overbrace{M} \omega
$$

a cucle
$\Rightarrow B \cdot$ deseends to $H M_{*}(f)$
The remelting mep depoids only on $[B]=b$

Geometrically and very onformally

$$
\begin{aligned}
{ }^{u} C M_{*} \longrightarrow & C_{*}{ }^{4} \\
x \longmapsto & W^{4}(x) \\
B \cdot x= & \sum \underbrace{(B(x, z) \cap B \mid} w^{4}(z) \\
& \left|\left(w^{u}(x) \cap W^{s}(z)\right) \cap B\right|
\end{aligned}
$$

$$
\frac{\text { Interpretetion II: Product on }}{=\text { intersection prodect }} \underbrace{\left.7 M_{*}(\not)\right)}_{M_{*}(P)}
$$

Prodrect on CM* (f)
Toke two funchies
Need to detiwe $f_{18 f_{2}}$ for twonsvorsality

$$
\begin{aligned}
& C M_{*}\left(f_{1}\right) \otimes C M_{*}\left(f_{2}\right) \longrightarrow C M_{*}\left(f_{1}+f_{2}\right) \\
& x \cdot y=\sum\left\langle x \cdot y, z>z \begin{array}{r}
\text { whthe } \\
f_{3} \text { here }
\end{array}\right. \\
& \mu(z)=\mu(x)+\mu(y)-2
\end{aligned}
$$

Ider: Replace B in th jventous courh by $W^{u}(y)$ \& informally the choin y gives rise to.
Mave foumally:
Cousiden

$$
\mu(z)=\mu(x)+\mu(y)-\omega
$$

Fon a geveric unetric \exists fintely mony such Y sheppent traj and their is $\langle x \cdot y, z\rangle$ (with sigms)

As defined itis not ausociative, but

$$
\partial_{M}(x \cdot y)=\partial_{M} x \cdot y \pm x \cdot \partial_{M} y
$$

(I think)
and on the level of houslogy we hove

$$
\begin{aligned}
& H M_{*}(f) \otimes H M_{*}(f) \rightarrow H M_{*}\left(f_{1}\right) \\
& \underbrace{H_{*}(P) \otimes H_{*}(P)}_{\text {intersection product }} \rightarrow M_{*}(P)
\end{aligned}
$$

Runk other homolopical tegtares of P olso love simila descriptious via graph Haws
Rmin: Wout:

$$
\begin{aligned}
& H_{*}\left(P_{a}\right) \otimes H_{>}\left(P_{b}\right) \longrightarrow H_{*}\left(P_{a+b}\right) \\
\Rightarrow \quad & f_{3} \leqq f_{1}+f_{2}
\end{aligned}
$$

PartII Lusternik-Schnivelmann

Theory
§ 15 Introduction
Setting : $f: \underset{\text { elosed }}{P} \xrightarrow{\infty} \mathbb{R}, P_{a}=\{f \leqslant a\}$
Q: Get a lowen bound on \mid Prit (f) without nou-degenevacy

Undeclying idea (lsoch neorse \& LS): top change
from P_{a} to $P_{b}$$\Rightarrow$ Crit pts betwen a\& b But Mouse \& LS proces this chonge differently
Romk. LS is mose versqtíle and better adapted to highes dim gevera lize h'ars

- In dim<n, nouse is deepe?

Comparison - Exauples

\mathbb{P}	mouse	$L S$
S^{n}	2	2
$\sum_{g \geqslant 1}^{n}$	$2 g+2$	3
$\mathbb{C} P^{n}$ our $\mathbb{R} P^{n}$	$n+1$	2
$n+1$	$n+1$	3
-3		
do int		
know		
this yet		

Rob. In general LS is very for from sharp
But: any $P^{1 t}$ (closed) admits
$f: P \xrightarrow{\infty} \mathbb{R}$ with

$$
\mid \text { (rit }(f) \mid \leqslant n+1 \text { (Tokens) }
$$

- Sharpues of krorse Theory \leftrightarrow Dit topology; Poincare conj h-cobrdism ere
Next Goal: Proving LS lower bounds start with a very traditional approach in topology Eg. Fomenko-Dubrovin-Novikov (101)
$\$ 16$ Topological Prelininovios:
LS Cotegory \& Cup-length
$X=a$ reasombley good space
Def: LS category of x :

$$
\begin{aligned}
& \text { LS category of } x: \\
& \operatorname{cat}(x)=\min \left\{k \mid \quad x=\bigcup_{i=1}^{k} A_{i}\right\} \text { closed or or }
\end{aligned}
$$

where $A_{i}{ }^{2}$ s ave catractible to $p t$ in X

Ex.

- $\operatorname{cat}\left(p^{h}\right)=2$
- cat $\left(\mathbb{R P}^{4}\right.$ or $\left.\left.\mathbb{C} P^{k}\right) \stackrel{(}{\leqslant}\right) n+1$
- $\operatorname{cat}\left(\sum_{g \geqslant 1}\right)=3$
π^{2}

$$
\begin{aligned}
& A_{1} \square \\
& A_{2} \square
\end{aligned} \quad \sum_{g} \cdot D^{2}=\sum_{2 g}
$$

Rok eat (x) is in general very difficuet to determine. Upper a bounds expl. constructions

Lecture 10
mare generally 02104
$X=n$-dim cw complex

$$
\Rightarrow \quad \operatorname{cat}(x) \leq n+1
$$

PI:: same argument: proceed inherutively
Also note: homotopy invariant
wnnected
Def The cup-length of X (over \mathbb{F})

$$
\begin{gathered}
\operatorname{cl}(x)=\max \left\{k \mid \exists \alpha_{1}, \ldots, \alpha_{k} \in H^{*>0}(x)\right\} \\
\alpha_{1}, \ldots v \alpha_{k} \neq 0
\end{gathered}
$$

Clearly: $0 \leqslant c \mid(X) \leq \underbrace{\operatorname{dim} X}_{\text {when } X}$ is a menitol Q
Rusk: : depends on the ground field

- \exists more general nobious...

Ex. $\cdot c l\left(S^{h}\right)=1$

- cl $\left(\pi^{n}\right)=n \quad \alpha_{i}=\left[d x_{i}\right]$
- $X=P^{2 n}$ closed synplectic

$$
\Rightarrow \quad c \left\lvert\,(P) \geqslant r=\frac{1}{2} \operatorname{dim} P\right., \quad \alpha_{i}=[\omega]
$$

- cl $\left(\Sigma_{g \geqslant 1}\right)=2$
- More generally P closed $\leftarrow P D$ $\operatorname{cl}(P) \geqslant 2 \quad$ over \mathbb{Z}_{2}
when

$$
\begin{array}{ll}
H^{i}(P) \neq 0 & \text { over anything } \\
0<i<k & \text { when orienteble }
\end{array}
$$

Rok Usually $c l(x)$ is not so bond to calmare - pretty primitive ELU.
Prop

$$
\operatorname{cat}(x) \geqslant \operatorname{cl}(x)+1
$$

Rump The gop">" con be hinge but examples ave not "ley" to construct noteimay manifolds you think about at this level
Con-Ex. $\quad \operatorname{cat}\left(\mathbb{R P}^{n}\right.$ on $\left.\mathbb{C} P^{n}\right)=n+1$
Pf
claim $A \subset X$ contractible to a pt

$$
\Rightarrow H^{*}(X, A) \xrightarrow[\text { onto }]{i^{*}} H^{*}(x) \quad \forall>0
$$

Raul. In de Rheo $H^{*}(X, A)$ comes from forms vanishing on A
Pf of the claim

$$
C_{A}(X)=\text { cone oven } A \subset X
$$

$$
H^{*^{*}}(x, A)=H^{*^{0}}\left(C_{A}(x)\right)
$$ essentially by defintion

$$
f_{t}: A \rightarrow X \text { cautroction to a pt }
$$

$$
\begin{aligned}
& f_{0} \div A \hookrightarrow X \\
& f_{1}(A)=p t
\end{aligned}
$$

Define $F: C_{A}(x) \rightarrow x$

$$
\begin{aligned}
& \left\{\begin{array}{l}
F(x)=x \quad \text { tor } x \in X \\
F(a, t)=f_{t}(a)
\end{array}\right. \\
& x \underset{F}{\stackrel{i}{\leftrightarrows}} e_{A}(x) \\
& F i=i d \Rightarrow \underbrace{i^{*} F^{*}=i d \text { in } H^{*}(x)}_{\|}
\end{aligned}
$$

i^{x} is outo
Pf of Prep: Assume the contwory:

$$
\begin{aligned}
& \text { no nold io jolion el }(x) \geqslant \operatorname{cat}(x) \\
& \text { to gol } \\
& \text { iy } x=A_{1} \cup \ldots \cup A_{k} \leftarrow \text { contr in } X \\
& \alpha_{1} \cup \ldots . \alpha_{\hat{1}^{k}}^{\alpha_{1}} \neq 0 \text { in } H^{*>0}(X) \\
& \tilde{\alpha}_{1} \quad \tilde{\alpha}_{k} \text { in } M^{*>0}\left(x, A_{i}\right)
\end{aligned}
$$

Recall $H^{*}(X, A) \otimes H^{*}(X, B) \rightarrow H^{*}(X, A \cup B)$ E.g. think ditl foum vonishis on A \& B

$$
\begin{array}{r}
0 \neq \underbrace{\alpha_{1} v \ldots v \alpha_{k}}_{n} \leftarrow \underbrace{\tilde{\alpha}_{1} v \ldots u \tilde{\alpha}_{k}}_{\hat{\pi}}=0 \\
H^{*}(x) \\
\nless H^{*}(x, \underbrace{\left.A_{1} \cup \ldots v A_{k}\right)}_{x}=0
\end{array}
$$

Ref Havidbook of Alg. Top
Discussion Edited by I.M. Tomes
LS cat is a peculiar notion "not quite happy with itself" some things to keep in mind:

- Not unonotone: $X \subset Y \not \cot (X) \leqslant \cot (Y)$
- \exists a notion of cat (A) : covering A, but coutractibe in X
Then $A C B C X \Rightarrow \operatorname{cat}_{x}(A) \leqslant \cot _{x}(B)$
- But $A=$ retract of $X \Rightarrow \operatorname{at}(A) \leq \operatorname{at}(X)$

$$
\hat{x}
$$

- Cat $x_{x}(A)$ is continuous in A
- $F \longrightarrow E$

$$
\operatorname{cat}(E) \leqslant \operatorname{cat}_{E}(F) \cdot \operatorname{cat}(E)
$$

- homotopy invariant (not quite obvious)
- $\operatorname{cat}(X \cup Y) \leqslant \operatorname{cat}(X)+\operatorname{cat}(Y)$
§17 Lower bound via LS cat

$$
f: \underset{c \text { cosed }}{P} \xrightarrow{c^{2}} \mathbb{R}
$$

This is how they do it in topology texbooks

Thm (LS) Assume thet Crit (f) ave isobled

$$
|\underbrace{\text { evit values of } f}_{\operatorname{cv}(f)}| \geqslant \operatorname{cat}(P)
$$

Con $|\operatorname{lrit}(\mathrm{f})| \geqslant \cot (P) \geqslant \operatorname{cl}(P)+1$
Runl conbe stict
Con P $\quad\left|C_{r i} t(f)\right| \geqslant$

$$
\left.\begin{array}{cc}
\mathbb{E P n} \& \mathbb{R P}^{2} & n+1 \\
\sum g \geqslant 1 & 3 \\
\pi n & n+1
\end{array}\right\} \begin{aligned}
& \text { conpleting } \\
& \text { Qhe pf of } \\
& \text { ivequalities } \\
& \text { trom } P \cdot 101
\end{aligned}
$$

Pf (outline)

- $f: P \rightarrow \mathbb{R}$
with exactly m critical values $c_{n}<\ldots<c_{m}$ \& isolated Crit (f)
\Rightarrow cover of P by m contr. to pt celts
- Do inductively by moving upward

Assume the corn for
P_{a} is constuckel C

$$
(k-1) \text { set }
$$

$\Rightarrow a$ cover of $P_{b} b_{2}$ k sets
-

$$
\tilde{U}_{x}:=\left\{\begin{array}{l}
\text { nflow invaviant }(\text { in } a<-f \leqslant b) \\
n b d \text { of } \Sigma_{x}
\end{array}\right.
$$

Observations:
\rightarrow - U_{2} is cotrochible by
upward/dowrwand How in a suall ubd B_{x} of x

- Bx is coutr to x
$\Rightarrow A_{k}=\frac{11}{x} U_{x}$ is coutr bo a pt $_{P_{B}}$
\rightarrow • $P_{b}>\left(\frac{11}{x} V_{x}\right)$ is homotopy equiv to I_{a} (Infect homeo) $\Rightarrow a$ cover of $P_{b} \backslash\left(\frac{11}{x} t_{x}\right)$ induclia

$$
\text { by } k-1 \text { sets } A_{1}, \ldots, A_{k-1}
$$

Togethr $A_{i}, \ldots, A_{k-1}, A_{h}$ the regrised cover of P_{b}

Q But how few Crit pts con a function on f have?

Thu (Takens, Inventioner, 1968)

$$
\begin{aligned}
& \operatorname{dim} P=k \\
& \Rightarrow \exists f: P \xrightarrow{c^{\infty}} \mathbb{R} \text { with }|\operatorname{crit}(f)| \leqslant n+1
\end{aligned}
$$

Cor $\operatorname{eat}(P) \leqslant \operatorname{dim} P+1$
P.also know because $P=C W$ of $\operatorname{dim} \leqslant n$ or selecting disjoint subset in a cover

Outlim of the pf

- Start with $f_{0}: P \rightarrow \mathbb{R}$
a moss function with owe max 2 one mire
- Sliding handles \Rightarrow con hove all critical plo of index i_{k} on one level $f=c_{k}$ and

- Ex - show that $\left\{f=c_{k}\right\}$ is connected
Rum Need to tweet the case

$$
n=2 \text { separotely }
$$

\downarrow

- Pick a tree, $\underbrace{\text { tref }}_{\text {_a union of smooth arcs }}$, $f=c_{k}\}$ intersecting only at thar ends homes to a hie

containing all critical pbs on $f=e_{k}$

- Contruct all Γ_{k} to pb

$$
P \cong P / \| T_{L} \quad \text { move precicely }
$$

\exists a surooth mop $P \xrightarrow{G}$ X ckingon

$$
\text { s.t. } P \backslash \| P_{k} \longrightarrow P \backslash\left\{x_{0} \ldots, x_{n}\right\} \text { iss }
$$

is a diffeo \& $\Gamma_{i}=G^{-1}\left(x_{i}\right)$

- Now $f_{1}=f_{0} G^{-1}: P \xrightarrow{c^{0}} \mathbb{R}$ is smooth outside X and orly C° at the phs of X
- Modity fi neor each x_{i} to mele it smooth and hove ouly owe cribical pis (Takens, Thm 2.7 - elementery but nom-ob vions)
§18. The min/max primeiple
And this is haw they do it in dynomies / caleulus of voriations
- $f: I \longrightarrow \mathbb{R}$, anti-grad flow closed unnifolld \leftarrow this couditia con be siguiticoutly ulcxed
- $y=a$ clan of cowpect
subseh of I clused
uvder $\varphi^{r \geq 0}$
Ex. Fix $\alpha \in \pi_{k}(\underline{D})$

$$
F=\left\{S^{h} \xrightarrow{u} P \mid[n]=\alpha\right\}
$$

- Fix $\alpha \in H_{*}(P)$
$F_{F}=\{$ cycles upresenting $\alpha\}$
E.g.. images of singular cycles (over \mathbb{Z}_{2})
- mops $\sigma: M \rightarrow P$ s-V.

$$
\sigma_{*}([M J)=\alpha
$$

(113)
set

$$
c_{f}(f)=\inf _{A \in f}^{\sup } \underbrace{\operatorname{sox}}_{\operatorname{mox}} f \mid A
$$

(minimex Principles) $C_{F}(f)$ is a critical value

Rus. Versatile 8 impozhent

- condidious coube relaxed
- a lot of applications

Ex. $\mathcal{F}=$ collection of all its in P

$$
C_{F}(f)=\inf _{A \in P} f(A)=\min f
$$

- $F=\{P\}<j u s t$ one set P itself

$$
c_{q}(f)=\max _{P} f=\operatorname{maxf}
$$

Pf of the min/max principle:- neal y obvious

- $c_{i}=\inf _{A \in F} \max _{A} t \|_{A} \quad A$ is compact
$7=\{A\} ; A$ is compact
I is closed under $\varphi^{t \geqslant 0}$
Assume e is not a critical value - a pf by contradiction
- $\exists \quad \varepsilon>0 \& \quad \tau>0$ sit.
$\uparrow f(x) \leqslant c+\varepsilon \Rightarrow f(\varphi \tau(x)) \leq c-\varepsilon$
compootnen \& c is not a critical value

- As said assume c is not a critical value take A so that $\max _{A}=c+\delta<c+\varepsilon$

$$
\begin{array}{r}
\operatorname{mox} f_{\varphi^{\top}(A)}^{A^{\prime} \in \mathcal{F}}=\underset{\substack{\text { beceux } \\
\varphi^{t r 0} \text { is invariant }}}{c-\varepsilon<c>} \\
<
\end{array}
$$

- Our next goall is to illustrote how Miu/mex warls by several siuple applicohious of the Edea.
- wesll keep on couing back do it over \& over
\$19 Connectivy with LS Theovy Lecture 11
- Critical value selectoss 02/09
Review miniug
This is the fisst applicotion of of the Min/mox Princeiple

Goal: reprove

$$
|\operatorname{crit}(f)| \geqslant \operatorname{cl}(P)+1
$$

Tolbe mose precics we ll prove

$$
\begin{aligned}
& \operatorname{Crit}(f) \text { isoletel } \\
& \quad \Rightarrow \operatorname{cv}(f) \geqslant c \mid(P)+1
\end{aligned}
$$

- As befone

By a much moze

$$
\delta: \underset{\imath_{\text {closed }}}{c^{\infty}} \mathbb{R}
$$

- Fix $F<\psi$ background ring (or field)

$$
H_{*}(P)=H^{n-*}(P) \text { when a fiold }
$$

Crikical value selectors

- $\alpha \in H_{k}(P)=H^{n-k}(P)$
- Stick to some coustruction of $H_{*}(\mathbb{P})$ as the homology of $C_{*}(P)$

$$
F_{\alpha}=\{A \mid[A]=\alpha\}
$$

Rmk. A is not neceusovialy a subset of P but retler a coubiection of nops to $P(A: M \rightarrow P$ or siupl. (hain) and then we mean the imaje of this nop

- Or it ca be liberally a cubset: - pseudo-sycles [mcDuH-Selamon]

Det-1 Criticalal value selevtors

$$
\begin{aligned}
c_{\alpha}(f):=c_{q_{\alpha}}(f): & =\min / \max \text { fon } \bar{q}_{\alpha}=\{A \mid[A]=\alpha\} \\
c_{\alpha}(f) & =\inf \max f \\
& {[A]=\alpha \quad A }
\end{aligned}
$$

Ex. $\quad P=\pi^{2}$

$\alpha=$ homology clans of then lao μs $c_{2}(f)$ is attained by pushing down A by $\varphi t \geqslant 0$
φ^{t} fill it "hakes on" a critical pt

Def 2. Assume f is Movie

$$
\begin{aligned}
& A=\sum m_{i} x_{i},[A]=\alpha \text { if } C M_{\alpha}(f) \\
& C_{\alpha}(f)=\frac{i n f}{A} \max _{m_{i} \neq 0} f\left(x_{i}\right)
\end{aligned}
$$

- If f is not Morse, approximate it by morse $\tilde{f} \xrightarrow{\infty} f$ and set

$$
c_{\alpha}(f)=\lim _{\tilde{f} \rightarrow f} c_{\alpha}(\tilde{f})
$$

Examples $\cdot C_{\text {[MD }}(f)=\max f$

- $c_{[p t]}(f)=\min f$

Def. 3

$$
c_{\alpha}(f)=\inf \left\{\underset{\sim}{a}|\underset{\operatorname{regula}}{ }| \underset{\operatorname{im}}{ }\left(H_{*}\left(P_{a}\right) \rightarrow H_{*}(P)\right)\right\}
$$

Pf of equiv: $\operatorname{Def} 2 \Leftrightarrow \operatorname{Def} 3 \Leftrightarrow \operatorname{Def} 1$
$\frac{\text { Propakies }}{\min / \operatorname{mox}}$ by def.

- Criticality: $C_{\alpha}(f)=c^{2}$ t value of f
- Monotonicity: $f \leqslant g \Rightarrow C_{2}(f) \leqslant c_{2}(g)$ By dit
- $\frac{c^{0} \text { continuity: }}{\uparrow} \quad \underbrace{\left|c_{\alpha}(f)-c_{\alpha}(g)\right| \leqslant|f-g| l}_{\text {Hint: }} \| c^{0}$

Hint:
use $f-\varepsilon \leqslant g \leqslant f+\varepsilon$
and monotonicity
Rok $\quad C_{\alpha}(f)=f(x)$
$\operatorname{Crit}(f)$

cannot wake x cont in f

- Sub-additivity $\quad \alpha, \beta \in H_{*}(P)$
(a) $c_{\alpha \cap \beta}(f+g) \leqslant c_{\alpha}(f)+c_{\beta}(g)$

In portimlan $\forall 太$ Take $g=0$
(2) $C_{\alpha \sim \beta}(f) \leqslant C_{\alpha}(f)$

Informal explonefion: for (i)

$$
\begin{gathered}
\alpha=[A], \beta=[B], \quad \alpha \cap \beta=[A \cap B] \\
C_{\alpha r \beta}(f+g)=\left.\inf \quad \max (f+g)\right|_{C} \\
\quad[c]=\alpha r \beta
\end{gathered}
$$

to be

$$
C=A \cap B
$$

$$
\begin{aligned}
& \leqslant\left.\max (f+g)\right|_{A n B} \\
& \leqslant\left.\max f\right|_{A}+\text { wax }\left.g\right|_{B}
\end{aligned}
$$

Now take inf over all $A \& B$

- Can be turned into a pf once "cycles" and $A \cdot B$ are defined
(2) is even easier:

$$
\left.\max f\right|_{A \cap B} \leq\left.\max f\right|_{A}
$$

Pf of (1) using Y-graph flows
con assume that f \& g are Mouse

$$
=\sum a_{i} b_{j} x_{i} y_{j}
$$

Pick A \& B so tut

$$
c_{\alpha}(f)=\max f\left(x_{i}\right)
$$

$$
(f+g)\left(z_{k}\right) \leqslant f\left(x_{i}\right)+g\left(y_{j}\right)
$$

$$
c_{\beta}(g)=\operatorname{mox} f\left(y_{j}\right)
$$

our of these C
Then $c_{\alpha \circ \beta}(f+g)=\inf \max (f+q)$

$$
\begin{align*}
& \quad c=\sum c_{k} w_{k} \\
& \leqslant \max f\left(z_{k}\right) \\
& \leqslant \max f\left(x_{j}\right)+\max g\left(y_{j}\right)=c_{a}(f)+c_{\beta}(g) \tag{122}
\end{align*}
$$

$$
\begin{aligned}
& \alpha=H M_{*}(f)=H_{*}(\beta), \quad A \in C M_{*}(f) \\
& \beta \in H M_{v}(g)=M_{*}(p), \quad B \in C M_{*}(g) \\
& A=\sum a_{i} x_{i} \\
& B=\sum b_{i} y_{i} \\
& \text { Crit (f) } \\
& \alpha \cap \beta=[A \cdot B]
\end{aligned}
$$

Ex. Give a divect pf of (2) using the $H_{*}(P)$-modi-str an $M M_{*}(f)$

$$
\begin{aligned}
& H M_{*}(f) \otimes H l_{*}(P) \longrightarrow H M_{*}(f) \\
& \alpha=[A] \quad \beta=[B] \\
& A=\sum a_{i} x_{i} \\
& B \cdot A=\sum a_{i}\left(B \cdot x_{i}\right) \\
& =\sum a_{i} \#\{\hat{F}\} z_{j} \\
& \text { f decresivy along } u \Rightarrow \text { (2) } \\
& z_{j}
\end{aligned}
$$

Cor $\min f \leqslant c_{\alpha}(f) \leqslant \max f$

A more subtle result
$\frac{\text { Tho("LS inequality") }}{\text { Assume 0 Erit(f) isolated }}$

- $\mid \beta /<n: \beta \infty[P]$
$\Rightarrow \quad c_{\alpha \sim \beta}(f)<e_{\alpha}(f)$
strict
I dour know a very simple pf
Exploration:

(Not enembicel
$\Rightarrow c=\max _{\mathrm{f}}^{\mathrm{f}} \mathrm{f}_{A}$ and $\operatorname{mox} / / A$ is attained at one pt on $A \Leftarrow \operatorname{erit}(4)$ isuloted

$$
|\operatorname{deg} \beta|<n \Rightarrow \operatorname{codim} B \geqslant 1
$$

generically
$\Rightarrow B$ does'r not pan throng max of f / A

$$
\begin{equation*}
\Rightarrow \quad \max f / A \cap B<\max _{A / A} \tag{4}
\end{equation*}
$$

Not hard to turn into a a real pf

Now we are ready to ze-prove

$$
\left.\begin{aligned}
\begin{aligned}
\text { Prop } \\
(L S)
\end{aligned} & f: P \xrightarrow{P} \xrightarrow{c^{2}} \mathbb{R} \\
& \\
\Rightarrow & \mid \ln \cdot t(f) \text { isolcted }
\end{aligned} \right\rvert\,
$$

Pf. $k=c \mid(P)$, use intersertion produ A

$$
\underbrace{\beta_{1} \cap \ldots \cap \beta_{k} \neq 0}_{\substack{\text { necesoul }[p-1] \\ \text { by } P D}} \text { in } \quad H_{*}(P)
$$

$$
\Rightarrow \underbrace{[M]}_{\alpha_{0}}, \underbrace{[M] \cap \beta_{1}}_{\alpha_{1}=\alpha_{0} n \beta_{1}}, \underbrace{[M] n \beta_{1 n} \beta_{2}}_{\alpha_{2}: \alpha_{1 n} \beta_{2}}, \ldots, \underbrace{[m] n \beta_{1}, \ldots n \beta_{k}}_{\alpha_{k}=\alpha_{k-1} n \beta_{k}}
$$

Pnop

$$
\Rightarrow \underbrace{\underbrace{C_{\alpha_{0}}}_{\text {mosf }}(f)>C_{d_{1}}(f)>\ldots>\underbrace{C_{k}(f)}_{\text {minf }}}_{k+1}
$$

Refinement:
Q. what happens when we have an equality of two exit voGue selectors?

$$
\begin{aligned}
e_{\alpha n \beta}(f) & =c_{\alpha}(f) \\
& <-i \text { isolated } \mid \beta 1<n
\end{aligned}
$$

Let $K=$ exit set on the level

$$
\begin{gathered}
f=c, \quad c=\operatorname{ean} \beta(f)=e_{\alpha}(f) \\
\alpha, \beta \in H_{*}(P)
\end{gathered}
$$

Prop The restriction of $P D(\beta) \in M^{*}(P)$ $(E x)$ is $\neq 0$ in $H^{*}(K)$

Ex. $\quad \beta=[P] \Rightarrow P D(\beta)=1 \in H^{0}(P)$

$$
\begin{aligned}
& H^{0}(P) \underset{\text { onto }}{\longrightarrow} H^{0}(k) \\
& 1
\end{aligned}
$$

and $\alpha \sim \beta=\alpha$

$$
\operatorname{Canp}(f)=C_{\alpha}(f)
$$

Con $|\beta|<n \quad(\Leftrightarrow|D D(\beta)|>0)$

$$
\Rightarrow \operatorname{eard}(k)=\text { coutinuamn (cannot be }
$$

Con $|\operatorname{cv}(f)| \leqslant c \mid(P)$
\Rightarrow continuom of Crit pts

Rama Need to be careful about the def of $H^{*}(K)$, for K could be a very bal set.
§20 Anothen Applicetion: Lecture 12 $02 / 11$
the Courant-Fiseben Thm

Setting

- $Q(x)=\langle A x x\rangle: \mathbb{R}^{n+1} \rightarrow \mathbb{R}, \quad A^{\top}=A$ a quadratic form
- $f=Q / s_{s n}: S^{h} \longrightarrow \mathbb{R}$

Alsoknow as the Rayleigh-Ritz quotient:

$$
f(x)=\frac{\langle A x, x\rangle}{\langle x, x\rangle}: \mathbb{R}^{n \neq 1} 0 \longrightarrow \mathbb{R}
$$

Mere we think of f as $S^{2} \longrightarrow T R$

- $\quad \lambda_{0} \leqslant \ldots \leqslant \lambda_{n}$ the eigenvalues of $Q_{\text {or }}$)

Thon (Courant - Fischer)

$$
\lambda_{k}=\inf _{\left\{L_{k}\right\}}^{\max f / L_{k},}
$$

E.g.

$$
\lambda_{0}=\min f
$$

$$
\partial_{n}=\max 7
$$

wher $2_{z}=S^{n} n\{\underbrace{k+1} \operatorname{dim} \operatorname{lin}$ space $\} \cong s^{k}$

$$
{ }^{1} \operatorname{Gon}(n+1, k+1)
$$

Rmh A similar stetement for Mermitian forms on \mathbb{C}^{n+1} LSome

$$
\text { E.g. } k=1
$$

$$
A=A^{*}
$$

$$
\left\{L_{0}\right\} \cong \mathbb{R} P^{2}
$$

Pf.

- crit $(f) \longleftrightarrow$ unit eigenvectors

A $\operatorname{cv}(l) \leftrightarrow$ eigenvalues
Pf Lagrange multipliers
crit of Q on $\{g=c\}=\operatorname{sol}$ of $\nabla Q=\lambda \nabla g$

$$
\begin{array}{cc}
\nabla Q=2 A x \quad & \left(A^{\top}=A\right) \\
\nabla g=2 x \quad g=\|x\|^{2} \\
\nabla Q=\lambda \nabla g: \quad \underbrace{A x=\lambda x},\|x\|=1
\end{array}
$$

x is an eigenvalue
Then $\quad f(x)=Q(x)=\langle A x, x\rangle=\lambda$
Ruin unit eigenvectors $(=\operatorname{erit}(f))$ come in pains $\pm x$ with the same crit value λ

- $F=\left\{L_{k}\right\} \leftrightarrow \operatorname{Gr}(n+1, k+1)$
$\underbrace{\text { To closed under } \varphi^{t} \text { (repicires }}_{\text {HW check }}$ (requires a $p f$) ∇Q is liven or \mathbb{R}^{n+1}
$\rightarrow \nabla f=$ prop of $\left.\nabla Q\right|_{\delta_{n}}$ to $\delta^{\delta^{2}}$
\rightarrow Need to chert that φ^{t} sends equator to equerto is

$$
\min /\left.\max \Rightarrow \inf _{f}^{\max } f\right|_{L_{k}}=\mu_{k}
$$

ave critical values

- Routine: $\mu_{k} \leqslant \mu_{k+1}$ next page

Get $\mu_{0} \leq \ldots \leq \mu_{m}$

$$
\lambda_{0} \leq \ldots \leq \lambda_{h}
$$

$$
\begin{aligned}
& : \begin{array}{l}
n+1 \quad l \\
\text { Need to check } \\
\text { that every c.v. } \\
\text { isobtised in } \\
\text { this way }
\end{array}
\end{aligned}
$$

Hi's are among λj^{\prime} 's
$\Rightarrow \quad \mu_{i}=\lambda_{j}$

$$
\begin{aligned}
& \text { Lon a geverre } Q \\
& \text { than pau to a limit }
\end{aligned}
$$

$$
\Delta
$$

Rub. Roller than working on s^{2} could work on $\mathbb{R P P}^{k}: f(-x)=f(x)$
\rightarrow Then L_{k} projects to $\hat{L}_{k} \subset \operatorname{RR} P^{k}$
liver proj subspace $\cong \mathbb{R} p^{k}$

$$
\left[\hat{L}_{k}\right]=\left[\mathbb{R} P^{k}\right]=\alpha_{k} \in H_{k}\left(\mathbb{R} p^{k}\right.
$$

 all cycles in α_{k}

$$
\partial_{k}^{\prime}=\inf _{\hat{L}_{k} \in^{\in}{T_{k}}^{\prime}}^{\left.\max f\right|_{L_{k}} \geqslant\left.\inf _{A \in \mathscr{F}_{\alpha_{k}}} \operatorname{maxf}\right|_{A}=\lambda_{k} .}
$$

$$
\left.\begin{array}{l}
\lambda_{n_{0}^{\prime}}^{\prime} \leq \ldots \leq \lambda_{n}^{\prime} \\
\lambda_{0} \leq \ldots \leq \lambda_{n}
\end{array}\right\} \begin{gathered}
b_{0} \text { th }_{2} \text { seguever } \\
\text { formed by crit } \\
\text { values }
\end{gathered}
$$ (generically distinct)

Fixing the gap: all eigenvalues occur.
By continuity, assume λ_{i} 's are distinct Assunve thee one of the eigenvalues does not occure

$$
\begin{aligned}
& \lambda_{i}<\lambda_{i+1} \\
& u \\
& \mu_{i}=\mu_{i+1}
\end{aligned}
$$

Two ways to reason:

1) A_{s} in refinement of $L S$:

Then $\operatorname{erit}(Q)$ are not isolated
2) By pasting to $\mathbb{R} p^{n}$

Then $\left\{Q<\lambda_{i+1}\right\}$ is contractible to $\mathbb{R P}^{i}$ and

$$
\begin{aligned}
& \left\{Q<\lambda_{i+1}\right\}>\mathbb{R} P^{i-1} \\
& \text { impossible } \longrightarrow<
\end{aligned}
$$

§21 History Diquesion:
Lusternik-Sehrivelmaun Thu
The origins of LS theory is
$\operatorname{Thm}(L S, 1929)$
Any metric on $\2 has $\geqslant 3$ sivple closed geodesics

- very difficuet
- Couplete detailed pf: Bollmann 1978

Idee of the pf \longleftrightarrow LS theony

- $\lambda=$ smooth embedded loojs in $\2

aqueat
cizole \nrightarrow great cizcles $\}<\Lambda$

$$
\operatorname{Gr}(3,2) \cong \mathbb{R P}^{2} \ll 2 \text {-dim lin. subspace }
$$

$\mathbb{R R}^{2}{ }^{\sim} n<$ Homotory equivech ca bso luvely war obios)

- $L: \lambda \rightarrow \mathbb{R}$ the length fauctional

By det $\operatorname{Crit}(L)=$ siuple closed geodesies

- Puuchlive: $\quad c \mid(\Lambda)=c l\left(\right.$ IRP $\left.^{2}\right)=2$

If we could do LS on Λ we wonld heve

$$
|\operatorname{erit}(L)| \geqslant \operatorname{cl}(\Lambda)+1=2+1=3
$$

One can do an avalogue of the LS theorg on A (thet was tho starting pt for them), bet this is very difticult.
§22 Getting rid of compactness:
the Polais-smole condition
Goal: Find a good replacement for the condition that P is compact Too restrictive.

Background assumption:
$P=$ finite dimensional (but possibly not e preferobles on compacts
Hilbert or Banach mouitd d
(never compact)
$-S: \mathbb{P} \rightarrow \mathbb{R}$ sufficiently smooth
Def f satisfies the Palais-Smole condition if (PS)

- every seq $\left\{x_{i}\right\} \subset P$ st.

$$
\left|f\left(x_{i}\right)\right|<c<\infty \quad \text { and } \quad \underset{(\leftrightarrow)}{d f\left(x_{i}\right) \longrightarrow 0}
$$

contains a convergent subseg
Rok $\quad d f\left(x_{i}\right) \longrightarrow 0 \Leftrightarrow \nabla f\left(x_{i}\right) \longrightarrow 0$
where \exists a Rem. $: \operatorname{dim} P<\infty$ on P Hilbert
but not when P is Bonack.

Rok Ps condition does not involve The flow of $-\nabla f$. One con have PS satisfied without the flow

Important: PS condition easily breaks down Donit seed anything exotic
construction: Start with $f: \frac{P}{\text { closed }} \rightarrow \mathbb{R}$

- $\dot{P}=P \backslash\{a$ crit pt $\}$
$\Rightarrow f: P B \rightarrow \mathbb{R}$ does not sationg the PS but everythis else is fine $\left(G_{t}\right.$ is defined for $a t$?

$\left|f\left(x_{i}\right)\right|$ bounded $\nabla f\left(x_{i}\right) \rightarrow 0$ but x_{i} does not conn $x_{i} \rightarrow x \& \dot{p}$

Upshot: Charge of topology from P_{0} to I_{D} Without PS \Rightarrow existence of critiod as

Basic exanple-applicetion-illustration
Assumptions:

- f bounded from below
- 1 sotioties PS
- The flow for anti-grad-line vector bield is defined for all $t \geq 0$
$\Rightarrow f$ has a critical pt actually min is attained

$$
\begin{gathered}
X \text { cit. } L_{x} f \leqslant 0 \\
L_{x} f(x)=0 \Leftrightarrow x \in \operatorname{Crit}(f) \\
E . g \quad X=-\nabla f
\end{gathered}
$$

For wary purposes an good an $-\nabla f$ but moue flexible \& does not need metric
Pf stent with some x and set

$$
z_{k}=\varphi^{k}\left(x_{0}\right) \quad k \rightarrow \infty
$$

PS + bounded from below

$$
\Rightarrow \quad z_{k} \rightarrow y<c^{-1} p t
$$

- To get min: tole x_{i} sit.
$f\left(x_{i}\right) \rightarrow \inf f$. Apply this process and get y_{i}

$$
\begin{aligned}
& d f\left(y_{i}\right)=0 \& \quad f\left(y_{i}\right) \rightarrow \inf f \\
& \Rightarrow \quad y_{i} \rightarrow y \& \quad f(y)=\inf f
\end{aligned}
$$

Back to Minimox
Setting
with some core

- P as above con replace by anti-gnod-lik
- $f: \mathbb{P} \rightarrow \mathbb{R}$ satisties PS
($)$. The anti-grad flow φ^{-2} of f is dellued for all times $t \geq 0$
- \mathcal{F} is closed under φ^{t}
to. f on I is bounded from below:

$$
\left.\inf _{A \in T} \max f\right|_{A}>-\infty
$$

The
(Minimax, II) $\quad=\left.\inf _{A \in f} \max f\right|_{A}$ is a crit value

Ex. Toke $F^{-p t s}$ of P in the previous example.

The pf is very similar to the example

Pf

- Bounded frown below $\Rightarrow c>-\infty$ $\stackrel{R}{\mathbb{R}}$
- Will prove: $\forall \varepsilon>0 \exists x$ s.t.

$$
c-\varepsilon<f(x)<c+\varepsilon \quad \&|\nabla f(x)|<\varepsilon
$$

- Arguing by contradiction, assume that:

$$
\|\nabla f(x)\|>\varepsilon \quad \text { when } c-\varepsilon s f(x)<c+\varepsilon
$$

for some $\varepsilon>0$

- $\exists \quad A \in F_{F}$ sit.

$$
\left.\max f\right|_{A}<c+\varepsilon
$$

- claim $\tau=\left.\frac{2}{\varepsilon} \Rightarrow \max f\right|_{\varphi^{2}(A)}<c-\varepsilon$

Indeed, toke $x \in A$
(a) if $f\left(\varphi^{t}(x)\right)<c-\varepsilon$ for sure $t \in[0, \tau)$ we are dove for

$$
\begin{equation*}
f\left(y^{t}(x)\right) \searrow \tag{137}
\end{equation*}
$$

(b) if $c-\varepsilon<f\left(\varphi^{t}(x)\right)<c+\varepsilon$ for $t \in[0, \varepsilon]$, we hove

$$
\begin{aligned}
& \left|\nabla f\left(\varphi^{t}(x)\right)\right|>\varepsilon \\
& \Rightarrow f\left(y^{t}(x)\right)<\underbrace{c+\varepsilon-\varepsilon^{2} t} \\
& \frac{d}{d t} f\left(\varphi^{t}(x)\right) \leqslant-\langle\nabla f, \nabla f\rangle \\
& \leqslant-\varepsilon^{2} \\
& \Rightarrow \quad f\left(\varphi^{\tau}(x)\right)<c+\varepsilon-2 \varepsilon \\
& <\quad c-\varepsilon \\
& \left.\Rightarrow \quad \operatorname{mox} f\right|_{\varphi \tau}(A)<c-\varepsilon
\end{aligned}
$$

Part III: Seodesics and all thot

Toward oo-dim applicetions
S23 Preliminavies

Lecture 13 02/16

Revien of relevant notions from Diftevential Geometry - minimalist
$M^{n}=$ closed manifold with a fixed
Riemannian metric
"Def 1" A geddesic \quad ": $[0, b] \rightarrow M$
is a curve locally minimizing leugth:
if $t_{0} \& t_{1}$ are close to each othr

$$
l\left(x \mid\left[t_{0}, z_{]}\right]\right)=\rho\left(x\left(-t_{0}\right), \gamma\left(t_{1}\right)\right)
$$

Heze

$$
\begin{array}{r}
l(x)=\int_{a}^{b} n \dot{\gamma}(t) u d t \\
\rho(p, q)=\inf l(y) \\
\eta \\
\text { connects } \rho \& q
\end{array}
$$

$\frac{\text { Rmk }}{} \cdot \frac{\text { l(x) is independewt }}{\frac{\text { of porametrizotion }}{\text { or osientation }}}$

- ρ is a mehre ${ }^{2}$ Mis couplete

A geodesir $p \leadsto r$ need not minimige dist stween p \& q.

Rmk oP coupret (conplete as a R,M.)
\Rightarrow any $p \& q$ can be connected by a geodesir (Hopf-Rinow Thm)
Ex: \exists a minizicy geodesie use Arzela_Ascoli, also will be
clean leter
In whet follows we will be inferested in two types of qeodevers: conneuting two fixed pis $p \& q$ and closed geoderves

$$
\gamma: \delta^{\prime} \xrightarrow{c^{\infty}} M
$$

$$
s^{4}=\mathbb{R} / \mathbb{Z}=[0,1] / 0
$$

$$
\dot{\gamma}(0)=\dot{\gamma}(1)
$$

$$
\begin{aligned}
& \frac{\text { set }}{\Lambda=\Lambda(p, q)} \\
& \begin{aligned}
\Lambda & \{\gamma:[0,1] \nsubseteq M) \text { sufficiertly smooth } \\
\Lambda & =\left\{\gamma(0)=j \quad s^{\prime}(1)=q\right\}
\end{aligned} \\
& =M\}
\end{aligned}
$$

Defe A geodesir is a "critical pt" of

$$
l: \Lambda \rightarrow \mathbb{R}
$$

bet geodesies comnectis $p \& q$, ete

Rmk Not quite seliofectory:

- L is not smooth: 114 not smooth $x \mapsto y=|x|$ not smost
But smooth at immessious:

$$
\dot{\gamma}(t) \neq 0 \quad \forall t
$$

- l is independert of paramptrizetion
\Rightarrow huge sets of critical pob
aloug witt x coutein Joy
[0,1]
Def 3 A geodesie is a crictical pt of the energy furchioual:

$$
\left.\begin{array}{l}
\text { Deprucls } \\
\text { on } \\
\text { paramutrizolion }
\end{array} E: \Lambda \longrightarrow \gamma^{2}\right)=-\int_{0}^{1} u \dot{\gamma}(t) \|^{2} d t
$$

An issue to deol with: wht ir a arit pt
Recal $f: P \rightarrow R \quad x$ is a cont. pot if

$$
d f_{x}=0 \Leftrightarrow \underbrace{\left(2_{v} f\right)(x)}_{d f_{x}(\sigma)}=0 \quad \forall v
$$

xes)

$$
\begin{aligned}
& f^{7} x \\
& x(0)=x \\
& \frac{d}{d s} x(0)=v
\end{aligned}
$$

$$
\Leftrightarrow \underbrace{\overbrace{\left.\frac{d}{d s} f(x(s))\right|_{s=0}}}=0 \forall \eta
$$

$$
=:\left(L_{v} f\right)(x)
$$

Def $x \in \operatorname{Crit}(E)$ if \forall any vorichion γ_{s} of γ we hove $\gamma_{0}=\gamma$

$$
\left.\frac{d}{d s} E\left(\gamma_{s}\right)\right|_{S=0}=0
$$

should think

$$
\begin{aligned}
& T_{y} \wedge=v . \int \text { along } x \text { in } \\
& \quad\left(\text { vonishivy of } p \delta_{g}\right)^{\frac{\pi}{p}} \\
& v=\frac{d}{d s} \gamma(s) \\
& \left(L_{v} E\right)(\gamma)=d E_{\gamma}(v):=\left.\frac{d}{d s} E(\gamma(s))\right|_{s=0}
\end{aligned}
$$

Fact: - geoderies in the sense of Def 3 also satisfy Defis 1 2 2 : locally length mininiziy and critical pis of L (u res $\gamma \equiv p t$)

- and $\dot{x}(t) \neq 0$ for on t unless $\quad \gamma \equiv p t$

Fact: As a eritical pt γ comes with a notuval povemetrizetion:
(E pics up a poometizghon) γ is poramebriged proportiowlly to are lereth to get from p to q or closeup in time 1.

Areleugth paranctrizotion:

$$
l\left(\left.\eta\right|_{[0, t]}\right)=t \quad \Rightarrow\|i \eta\|=1
$$

$\int_{p}^{r(t)}$ length q
Lihewise for clused geodesics

$$
l=\rho(p, q)=L(y)
$$

η poramchized by ave leugth: $[0, l]$

$$
\gamma(t)=\eta(l \cdot t)
$$

$$
\Rightarrow\|\dot{\gamma}(t)\|=l
$$

$$
\Rightarrow E(\gamma)=\int_{0}^{1}\|\dot{\gamma}(t)\|^{2} d t=l^{2}
$$

For any x parametrized by $\left[0_{2} 1\right]$ ~ avclength

Foct: $\cdot \exists \varepsilon>0$ s.t. $\forall p, q \in M$
Cinjectivity|with $\rho(p, q)<\varepsilon$
radius) \exists unique minimal geodesir $\gamma p, q$ counectis p to $q: l\left(\gamma_{p, q}\right)=p(p, q)$

- Moveover, Xp.q depecis smoothly on $(p, q) \in M \times M$

Rnk. r is a geodeste (in the sense of Def 3)

$$
\Leftrightarrow \nabla_{\dot{\gamma}} \dot{\gamma}=0<\text { auelevotion }
$$

This is how geodesies ave usually detined in R.G.

Rank In the next two sections we follow Bott's "Lectures on M.T."
§24 closed Geodesics, I: Cartanis Tim
M^{n} closed Riemannian manifold
Recall: free homotopy classes $S^{\prime} \xrightarrow{C^{\infty}} M$

$$
\begin{aligned}
& =\left[S^{\prime} M\right] \\
& =\text { conjugrey clans in } \pi_{1}(M)
\end{aligned}
$$

$\Rightarrow \pi_{l}(B) \neq 1 \Leftrightarrow$ Inon-coutroclible loops
Tho (Carton) $\quad \pi_{1}(m) \neq 1$
for any non-trivial free homotopy class $[\alpha] \in[S, M] \exists$ a closed geodesic in the clan $[\alpha]$.

Idea: toke the shortest loop in α as this geodesic or minimize E over all loops in α

Minor adjustment to the setting:

$$
\Lambda=\text { continuous piece-wite smooth }
$$ loops

Note: E, lett an still
 defined...

Recall: $\left[, S^{\prime \prime} \cap\right] \longleftrightarrow \pi_{0}(\Lambda)=\begin{gathered}\text { connected } \\ \\ \text { componewhs }\end{gathered}$

$$
\text { in } \lambda
$$

$$
\Lambda_{\alpha}=\text { the connected conponent } \Rightarrow[\alpha] \neq 1
$$

Pf

- DI Geodesir polygous = brohen geodesies shast geodeste segmats ε <inj.rad

$$
P_{k-1} \ldots \rho\left(P_{i}, P_{i+1}\right) \leqslant \varepsilon
$$

$$
\left(P_{k}=P_{0}\right)
$$

\vec{p} giver rise to a well-defined element in Λ "broben geodesr ${ }^{4}$ (terminology)

- Every loopacon be a pproximobed by broken geodesie (with large k) in the some free homotopy elass.
\rightarrow Portition $[0,1]=\$ 1$ into

$$
\begin{array}{ccc}
0=t_{0}<t_{1}<\ldots & <t_{k-1}<t_{k}=1=0 \\
\alpha\left(u_{0}\right) & \alpha\left(t_{1}\right) & \alpha\left(t_{k-1}\right) \\
4\left(t_{k}\right) \\
p_{0} & p_{1} & p_{k-1} \\
11 & p_{0}=p_{k}
\end{array}
$$

so thet $\rho\left(P_{i}, \alpha(t)\right)<\varepsilon \quad \forall t \in\left[t_{i}, t_{i+1}\right]$

$$
\begin{equation*}
P_{i}=\alpha\left(t_{i}\right) \tag{146}
\end{equation*}
$$

\Rightarrow broken geodergie $\vec{p}=\left(p_{0}, \ldots, p_{k-1}\right)=\xi$ c^{0}-approximoling α
Homotopy from α to ξ : povomebrized
by [0, i]
~ave lergth

Con: Every Λ_{α} coutains a broken geodesie

Next: $\quad P_{k} \subset \underbrace{M x \ldots x M}_{k}$ s.t.

$$
\varepsilon(\vec{p})=p\left(p_{0}, p_{1}\right)^{2}+\ldots+p\left(p_{k-1}, p_{0}\right)^{2} \leqslant \varepsilon^{2}
$$

Important:
(i) $\vec{p} \in P_{k} \quad \Rightarrow \quad \rho\left(P_{i}, P_{i+1}\right) \leqslant \varepsilon$

$$
\begin{aligned}
& \Rightarrow \text { get a broken geodesic } \xi \forall \vec{p} \in P_{k} \\
& \Rightarrow P_{k} \subset \Lambda
\end{aligned}
$$

(2) ξ is not necessarily short:
any α con be approximoled by an element in $P_{k} \leftarrow$ lase
Pf. Approximated α for some $\& \& \delta$ (in place of ε)

$$
\rho\left(P_{i}, P_{i=1}\right)<\delta
$$

and start subdividing

$$
\begin{aligned}
& \rho\left(p_{i}, p_{i+1}\right)=d<\delta \\
& \rho\left(p_{i}, q\right)=\rho\left(q_{i}, p_{i+1}\right)=\frac{d}{2}
\end{aligned}
$$

$\rho\left(p_{i,} p_{i+1}\right)^{2}=d^{2}$ get t replaced by

$$
e\left(P_{l}, q\right)^{2}+p\left(q, P_{i+1}\right)^{2}=\left(\frac{d}{2}\right)^{2}+\left(\frac{d}{2}\right)^{2}=\frac{d^{2}}{2}
$$

Con mole the total sum $\sum \rho\left(p_{i}, p_{i-1}\right)^{2}$ corbituovily small

Lecture 14

$$
02128
$$

Instructive: U(otion between $\varepsilon(\vec{p}) \& E(\xi)$

$$
\varepsilon(\vec{p})=\sum \rho\left(p_{i} p_{i-1}\right)^{2}
$$

- deperses on pertition and poromotrizohion
- cen be reolly small
E.g. $\quad l(\xi)=l, \quad p\left(p_{i}, p_{i+1}\right)=\frac{l}{k}$

$$
\Rightarrow \varepsilon(\vec{p})=k \cdot\left(\frac{l}{k}\right)^{2}=\frac{1}{k} l(\xi)^{2}=\frac{1}{k} E(\xi)
$$

overall depects on whre P_{i} 's ove:

$$
E(\xi)=\sum_{i=0}^{k-1} \frac{\rho\left(p_{i}, p_{i+1}\right)^{2}}{t_{i+1}-t_{i}}-<\text { Hore generitly }
$$

Cwhon proundrized by [0, 1$]$, wavelength on evele $\left[t_{i-1}, t_{i}\right]$

Rmk - P_{k} approximates \{E<a\} in 1 very well (homotopy eq) whon K is lange
Upshot $P_{k \alpha}=\lambda_{\alpha} n P_{k} \neq \varnothing \quad(k$ large $)$
smooth mouitald with boundery: $\varepsilon=\varepsilon<$ genevic

$$
\begin{aligned}
& \Rightarrow P_{k, \alpha}= \text { union of some } \\
& \text { counerted couponerts } \\
& \text { of } P_{k}
\end{aligned}
$$

Idea: Preplace E by ε on P_{k}

$$
\text { - soon see } \underbrace{\operatorname{Crit}(\varepsilon)}_{\text {clorel geodesies }}
$$

But not crucial.

Then: minuinize E on $P_{z, \alpha}$
$\underline{R_{n k}} \cdot \varepsilon \int_{\partial P_{k}}=\left.\max \varepsilon\right|_{P_{k}}=\varepsilon^{2}$

- $\varepsilon \geqslant 0$
- milu $\left.\varepsilon\right|_{P_{r, \alpha \neq 1}}>0 \leftarrow$ douit weed

Lemma $\quad \gamma \in \operatorname{Crit}(\varepsilon) \Rightarrow \gamma$ is a closed $\stackrel{\text { Idea: }}{\text { changes }}$
pf of the lemma $\&(\vec{p})$

Step 1
(p, q) neon diagond in $M \times M$:

$$
e(p, q) \leqslant \varepsilon<\text { ing. rodius }
$$

How does $p(p, q)$ changes when we move p \& q ?

$$
x^{ \pm}=\text {unit tangents }
$$

$$
p^{2}=\rho(p, q)
$$

$$
T_{(p, q)} M \times M=\underset{\sim}{T_{p}} M \times{\underset{q}{q}}^{Y_{q}}{\underset{q}{q}}^{v}
$$

$$
\begin{equation*}
L_{\left(Y_{p}, Y_{q}\right)} \rho^{2}=2\left(\left\langle X^{t}, Y_{q}\right\rangle-\left\langle X^{-}, Y_{p}\right\rangle\right) \cdot \rho \tag{x}
\end{equation*}
$$

Put the pf of (*) aside for now and finish the pf of the levine

Step 2

At every P_{i} we hove $X_{i}{ }^{7}$ \& X_{i-1}^{-} and Y_{i}

Summing up ($*$) for each segment we git

$$
\begin{aligned}
& L_{\left(Y_{0}, \ldots Y_{k-1}\right)} \in(\vec{p}) \\
= & 2 \sum_{i=0}^{K-1}\left(\left\langle Y_{i+1)} X_{i+1}^{+}\right\rangle-\left\langle Y_{i}, X_{i}^{-}\right\rangle\right) \rho_{i} \\
= & 2 \sum_{i=1}^{k}\left\langle Y_{i}, X_{i}^{+} \rho_{i}-X_{i-1}^{-} \rho_{i-1}\right\rangle \\
\Rightarrow & \vec{p} \in C_{r i}+(\varepsilon) \Leftrightarrow X_{i}^{+} \rho_{i}=X_{i}^{-} \rho_{i-1} \quad \forall i
\end{aligned}
$$

\Leftrightarrow no corner at at pi

and porometrizetien of the edges we tale.

Remains to prove (*)

Pf of (*) in \mathbb{R}^{k} Similar is general but need a bit
 unsure D.G.
see milnow's book p. 71 .

Con annume one of the vectors Y_{p} or $F_{q}=0$ (by additivity). Say $Y_{p}=0$

$$
\begin{array}{rl}
p=0 \Rightarrow & \xi(t)=q t \\
& x^{+}=x^{-}=q / k q \| \\
q_{s}=q & s x_{q}
\end{array}
$$

$p=0$

$$
p^{2}(s)=\left\|q_{s}\right\|^{2}=\left\|q+s Y_{q}\right\|^{2}
$$

$$
\left.\frac{d}{d s} p^{2}(s)\right|_{s=0}=\frac{d}{d s} U q+s Y_{q} \|\left.^{2}\right|_{s=0}
$$

$$
=2\left\langle q Y_{q}\right\rangle=2\left\langle{\underset{X^{+}}{n q u}}_{\frac{q}{n}}=Y_{q}\right\rangle{\underset{p}{p}}_{\|_{q} u}
$$

$$
=2\left\langle x^{+}, Y_{q}\right\rangle \cdot p
$$

Rok whet happens if $[\alpha]=1$
The argument goes through but gives a point geodesic

Rush some argument shows the exortence of a miviniizing geodesic between any two points.

Rune Could have worked with E on Pro, just need to be a bit more careful near ∂P_{k}
§25 closed Geodesics, II :
2usternik -Flt Tm

But what of $\pi_{i}(M)=1$?

Tho (Lusternik - Fet)
$\pi_{1}(M)=1 \Rightarrow \exists$ a son-con Z closed geodesic
The argument builds on the nochinerg we developed in the prev. section
Note: Now 1 is connected
pf

1) First need a bit on top of 1 . Evaluation map

$$
\begin{aligned}
& \left.e: \begin{array}{rl}
\Lambda & \rightarrow M \\
x \rightarrow
\end{array}\right\}(0) \text { ere fibrotion } \\
& \Omega \xrightarrow{\dot{j}} \lambda \\
& \Omega=e^{-1}(p) \\
& \text { = loops troy } p \\
& =\{x \mid x(0)=p\}
\end{aligned}
$$

a section $p \longmapsto$ constant lop $\gamma(t) \equiv p$

$$
e s=i d \quad: \quad M \rightarrow \Lambda
$$

Fibrokien \Rightarrow long exact seq in komotoyg gis

$$
\begin{aligned}
& \bar{\pi}_{i+1}(\Omega) \xrightarrow{\partial} \pi_{i}(\Omega) \xrightarrow{j_{*}} \pi_{i}(\Lambda) \xrightarrow[s_{*}]{\stackrel{e_{*}}{\longrightarrow} \pi_{i}(M) \xrightarrow{0} \pi_{i-1}(\Omega) \xrightarrow{j_{*}}} \\
& e s=i d \Rightarrow \quad e_{*} s_{*}=i d \\
& \Rightarrow \pi_{i}(\Lambda)=\pi_{i}(\Omega) \oplus \pi_{i}(M) \\
& A l \text { so } \quad \pi_{i}(\Omega)=\pi_{i+1}(M)
\end{aligned}
$$

$$
i \geqslant 1
$$

$$
\Rightarrow \pi_{i}(\Lambda)=\pi_{i+1}(M) \oplus \pi_{i}(M)
$$

$\Rightarrow \pi_{i}(\lambda) \neq 0$ for some $i \geqslant 1$
Toke min i so flect $H_{i}\left(M_{j} \mathbb{Z}\right) \neq 0$

$$
\pi_{i}(1 M) \neq 0
$$

Moveover $\exists i \geqslant 1$ such olub

$$
\bar{u}_{i}(n) \neq 0 \& \bar{u}_{i}(M)=0
$$

2) Need state exactly how P_{k} approximates A :
Lemma For any $i_{0} \exists k_{0}$ such that

$$
\begin{aligned}
\pi_{i}\left(P_{k}\right)=\pi_{i}(\Lambda) \quad \text { for } \quad & i \leq i_{0} \\
k & \geq k_{0}
\end{aligned}
$$

pl
Here we have $P_{k} \longrightarrow \Lambda$

$$
\begin{array}{ccc}
\text { need } & \ddots \uparrow A \\
\phi_{i} & & \sum^{i}
\end{array}
$$

- The pt $A(3), 3 \in S^{i}$ is a loop, Need to contra it continuously (in I) to a loop in Pu

We hove constructed such a coutruchor for on individual t Dependiy only on a sufficiently five partition

$$
t_{j}=\frac{j}{k}
$$

The value k is determine by

$$
\begin{equation*}
\max _{t \in \delta}\|\dot{\gamma}(t)\|=\|\dot{\gamma}\|_{c^{0}} \tag{157}
\end{equation*}
$$

Now it suffices to dele the same k for all $A(3)$:

$$
\operatorname{mox}_{s \in \$_{i} i}\left\|\frac{d}{d t} A(J)\right\|_{c} \cdot \leadsto k
$$

Rub. In this construction and the original one, we did not specify how to parametrize ξ.

- Con parametrize ~auclength

$$
\Lambda \underset{\sim}{\underset{\sim}{~}}\{\operatorname{loogs} \text { parametrized } \sim \text { ave lergtt }\}
$$

- Deform γ to ξ with whoever peremetrizotion, reporamatrize

3) Punchline

- Toke $i \geq 1$ so quit $D_{i}(1) \neq 0$ and

$$
\left.\bar{u}_{i}(M)=0 \quad B_{y}\left(x_{1}\right) \text { in }\right)
$$

Take k so longe that

$$
\left.\bar{w}_{:}\left(P_{k}\right) \neq 0<\text { exirts by } 2\right)
$$

- $F=\left\{A: \xi^{i} \rightarrow P_{k} \hookrightarrow \wedge\right\}, \quad[A]=\alpha \neq 0 \operatorname{in} \bar{U}_{i}\left(P_{k}\right)$ Closed under the positive arti-grad tow for ε an P_{n}

$$
\varepsilon \overbrace{\left.\frac{\cdots}{q}\right]^{q}} \quad \varepsilon=\varepsilon \quad \varepsilon>0
$$

$$
\stackrel{g}{\square} p_{n}
$$

Pu has bounder y but it
does not molter:

$$
\varepsilon h P_{n}=\operatorname{mox}
$$

- Apply the Minimax Principle for F Get a critical value a trained on some γ :

$$
c=\varepsilon(x)=\left.\inf _{A \in f} \max \varepsilon\right|_{A} \geqslant 0
$$

- Need to know Hut $c>0$

$$
\Rightarrow \text { i is nou-trivial. }
$$

But if not, A gets coulvocted into $\underset{1}{\text { conct }} \rightarrow M_{1007 s} \rightarrow P_{n} \subset \lambda$ by the onti-gral flow

$$
\varepsilon=0 \quad \Rightarrow A \text { is reppresated in } M
$$

§26 Infinite-dim approach Lecture 15 02/23

Recall
Very briefly
Sobolev spare (not cohomology) of H^{\prime}-functions on S^{\prime} : $H^{\prime}\left(\frac{\delta}{\prime}, \mathbb{R}\right)$
Abs. continuous functions f such tut f^{\prime} is L^{2}
Hilbert space with the inner product

$$
\langle f, g\rangle_{H^{\prime}}=\langle f, g\rangle_{L^{2}}+\left\langle f^{\prime}, g^{\prime}\right\rangle_{L^{2}}
$$

Ruin Con also define os

$$
\begin{equation*}
\langle f, g\rangle_{H^{\prime}}^{\prime}=f(0) q(0) t\left\langle f^{\prime}, g^{\prime}\right\rangle_{L^{2}} \tag{f}
\end{equation*}
$$

Different product but "equivalent"
Likewise: f con tale values in \mathbb{R}^{n}
Deft $\Lambda=H^{\prime}$-maps $\quad \gamma: f^{\prime} \rightarrow M$ $\gamma \bar{\gamma}$ is abs. continuous closed Ricmenus $\dot{\gamma}$ is L^{2} :

$$
\int_{\$^{\prime}}\|\dot{\gamma}(t)\|^{2} d t<\infty
$$

Fact Λ is a Milbert mavifold (modeled on $H^{\prime}\left(\$^{\prime} \rightarrow \mathbb{R}^{L}\right)$

Taugent space:

Ref Klingenbevg "Lectures on closed geodestes"
Chop $1 \& 2$ (ex caubion)
Irupostant

$$
\begin{gathered}
E: \Lambda \longrightarrow \mathbb{R} \text { is delrinad \& smooth } \\
E(\gamma)=\frac{1}{2} \int_{0}^{1} x \dot{\gamma} u^{2} d t
\end{gathered}
$$

Elements of a love junt enougk smooth nen

Key pt: one can do basic LS for E on Λ
steps (withant pts)

- Anti-grad How for $\nabla_{H} E$ is defined on A for $t \geqslant 0$
- E sohisfies th PS condition II
$\left\{\begin{array}{l}\Rightarrow \text { min } E \text { is attained on every } \\ \text { connected component } \\ \Rightarrow \text { Corotenstheovers } \\ \text { and }\end{array}\right.$

$$
\begin{cases}\Rightarrow & \text { minimox holds } \\ \Rightarrow & \text { Lusterkik-Fet tum }\end{cases}
$$

Important auk

- E would still be defined it we required more smooth ken for elements of $1 \quad H^{k>1}$-Soboleo space
- But PS condition would than buek down

Under lying Principle:
In all problems of this type require as little smoothness as necessary to hove the function defined.
E.g. For the action functional one would have to work with $H^{1 / 2}$.

Important underlying features of E tut make things work

- E is bounded from below
- At every $x \in C_{n i t}(E)=$ closed geodorie $d_{x}^{2} E$ has

$$
\left\{\begin{array}{l}
\rightarrow \text { finite } \# \text { of neg squares } \\
\rightarrow \text { (finite index) } \\
\rightarrow V \in T_{\gamma} E \text { st. }\left.d_{\gamma}^{2} E\right|_{V} \leqslant 0 \Rightarrow \operatorname{div} V<\infty
\end{array}\right.
$$

Not always true: lng. fails for the action functional on $\mathrm{H}^{1 / 2}$
\Rightarrow Huge difficulties

Rat (Bumpy Metrics)

- In general, E ar el are not Movie
- A closed geodesic \forall is uou-deg if it's nou-deg as a periodic orbit of the geodesic flow on its level
$\Leftrightarrow d_{\gamma}^{2} E$ is nou-deg in the hovse-Bott
- Far a co-geveric metric all closed geodesics ave wou-deg $(\Leftrightarrow E$ or b is Mouse)
such metrics ave celled Bumpy Metrics
Abraham (1970) - without conglete pf Anosor (1983) - complete pf

\Rightarrow a bumpy metro hes © many prime geodeses
can be eliminated
(Gromoll-meyon a73?)

Not true for sn. Not known if every metric on s^{3} has ∞ neong prion geodesics.
§26 A quick glonce at other ealunlas of variahious questious

Recap: whet we hove leorned

$$
M \text { a R.m. }<,>=R, m
$$

$$
\begin{aligned}
& L: T M \rightarrow \mathbb{R} \leftarrow a \text { Lagrongiau } \\
& \left.(q, v)=\frac{1}{2}<v, v\right\rangle q \quad \text { Fix } T>0 \\
& E(\gamma)=\int_{0}^{T} L\left(\gamma, \gamma^{i}\right) d t \\
& E: A \rightarrow R R, \Lambda=\{S=\mathbb{R} / T \mathbb{Z} \rightarrow M\}
\end{aligned}
$$

$\operatorname{lrit}(E)=$ closed gesdesics
perametrized by [0, T]
nare length

Solutions of:

$$
\nabla_{\dot{j}} \dot{\gamma}^{i}=0 \leftarrow \text { accelevation }
$$

Goverus the motion of a unit mass pozticle confined to m

Carton \& Lusternik-Fet

$$
\Rightarrow \text { Existence }
$$

Other types of Lagrangians
(1) $L(q, v)=\frac{1}{2}\langle v, v\rangle_{q}-V(q)$

Potential $V: M \rightarrow \mathbb{R}$ on $V: M \times, S^{\prime} \longrightarrow \mathbb{R}, ~$
energy $\mathbb{R}^{2} / T \geq$

$$
\left\{\begin{array}{l}
\text { same } 1 \\
\mathcal{L}(\gamma)=\int_{0}^{T} 2(\gamma, \dot{\gamma}) d t
\end{array}\right.
$$

$$
\operatorname{Crit}(\mathcal{L})=
$$

$$
\begin{aligned}
& \gamma: \delta^{\prime} \rightarrow M \\
& \nabla_{\dot{\gamma}} \dot{\gamma}^{\circ}=-\nabla V \leftarrow \text { Force }
\end{aligned}
$$

Governs the motion of a unit man particle on M, ext. force $F=-\nabla V$.

$$
\frac{1}{2}\langle v, v\rangle+\left\langle v ; g^{-1}(\alpha)\right\rangle-v
$$

(2)

$$
L(q, v)=\frac{1}{2}\langle v-\alpha, v-\alpha\rangle_{q}-\nabla v
$$

\checkmark the same: potential energy
$\alpha \in \Omega^{\prime}(M)$: magnetic potential

$$
\operatorname{lnit}(\mathscr{L})=\gamma: s^{\prime} \rightarrow \mathbb{R}
$$

$$
\nabla_{\dot{j}} \dot{\gamma}=-\nabla v+\underbrace{F(\dot{\gamma}, \dot{\gamma})}_{\text {lorentz Force }}
$$

$$
\begin{array}{ll}
F(q, v):=g^{-1} i_{j} d \alpha & \operatorname{RmL}: \operatorname{orl}(y \\
& i_{v} \\
F: T M \xrightarrow{i_{v}} T^{*} M \xrightarrow{g^{-1}} T M & \text { meters } \\
(v, q) \longrightarrow i_{j} d \alpha \longmapsto F &
\end{array}
$$

$$
d \alpha=\text { magneto field }
$$

Ex a) $B=$ magnetic field is \mathbb{R}^{3}

$$
\|_{d \alpha}=i_{B} \frac{(\underbrace{}_{d v_{0} l}}{\text { Mradyndz }}<\text { Maxwell }_{\text {closed }}^{\text {Mex }}
$$

$$
F(q, v)=B \times v \text { at } q
$$

b)

$$
\begin{aligned}
& w=B d x a d y \text { in } \mathbb{R}^{2}, B: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
&=d \alpha \\
& F(q, v)=B \cdot J v \text { at } q
\end{aligned}
$$

Governs the motion of a unit mans, unit doves particle on M, ext. force $F=-\nabla V$, and magnetic field $d \alpha$.
Ex. Deter mine the flow on \mathbb{R}^{2} when $B=$ cost.
3) Move generally:

$$
L: T M \longrightarrow \mathbb{R} \quad \text { sot. }
$$

on $L: T M \times \underbrace{\oint^{\prime}}_{\mathbb{R} / T \mathbb{Z}} \longrightarrow \mathbb{R} \quad$ Eg.
a) fiberwise convex

$$
L(q, \sigma) \geqslant A \| v u-B
$$

b) quadratic or superlinean

$$
\int_{\text {exact coudihious vary }} \text { growth as } \quad \text { (Tonelli Lager) }
$$

ReL. When L is time-depekdient and T-periodic on time, $\gamma: \xi_{T}^{T}=\mathbb{R} / T \mathbb{Z} \rightarrow M$ some T. Con set $-T=1$, but doit wont to yet.
Goal: Existence of Crit (2)

$$
\mathcal{L}(\gamma)=\int_{0}^{T} L(\gamma, \dot{\delta}) d t
$$

Solutions $\gamma: s^{\prime \prime} \longrightarrow M$ of the
Euler - Lagrange equation:

$$
\frac{d}{d t} \frac{\partial L}{\partial v}(\gamma, \dot{\gamma})=\frac{\partial L}{\partial q}(\gamma, \dot{\gamma})
$$

Thm (Benci, 86$) \leftarrow$ sawple resset

- $\pi_{1}(M) \neq 1 \Rightarrow$ sol in every \neq trivial free houobrply class
- $\bar{w}_{1}(M)=1 \Rightarrow$ inf mony cocitrachible

T-periolic soles γ_{k}
Monever: $\mathcal{L}\left(\gamma_{k}\right) \rightarrow \infty$
this is whut mokes it mwy ikbresh. In some $\left.\frac{\text { sels }}{\left(\frac{002 e}{}\right)} \mathrm{f}_{k}\right\}$ ave distinct (loose)

Runk: \rightarrow nu longen hove the notion of trivial (const) US nor-trivial (won-const) sol
\rightarrow Fon geodersic flow get reporametrizetien of the some iteroled geodeste:

$$
\begin{aligned}
& \gamma_{1}, \gamma_{2}, \gamma_{3}, \ldots \\
& r_{2}(t)=\gamma_{1}(2 t), \gamma_{3}(t)=\gamma_{1}(3 t), \ldots
\end{aligned}
$$

On the pf
\rightarrow Fix a background R.M.
\rightarrow The H^{\prime}-anti-qvad-flow for \mathcal{L} is defined for all $-L \geqslant 0$
\rightarrow P.S. condition is sohisfied

- $\pi_{1}(M) \neq 1$: Exactly as fan geodesics in $\S 25$:
minimise \mathscr{L} or $\lambda_{\alpha \neq 1}$
- $\bar{D}_{1}(M)=1$. To get just one solution could again just mininigl
To get ∞ mong, find a seq
of classes

$$
\beta_{k} \in H_{m_{k}}(\Lambda ; \mathbb{R}) \quad m_{k} \rightarrow \infty
$$

PS
\Rightarrow minimox orbits γ_{k}
However β r's ave not supported in the lower energy regions.
of Λ : energy for some R.M.

$$
\beta_{k} \notin \operatorname{im}\left(H_{*}\left\{E<c_{k}\right\} \rightarrow H_{*}(\Lambda)\right)
$$

for some $C_{k} \rightarrow \infty$

$$
\Rightarrow \mathscr{L}\left(x_{k}\right) \rightarrow \infty
$$

Run
A quick digression: A fixed energy problem

- Sofar we looked for periods orbits of a fixed period
But one can look for periodic orbits with "fixed energy" - (and much bible herder)
- Assumption:
$L=$ independent of time
set $H(q, v)=\frac{\partial L}{\partial v} \cdot v-L$
Then $E-L \Rightarrow \frac{d}{d t}(H(r, \dot{\gamma}))=0$
\Rightarrow Trajectories on the some level of t (oourpact) $\leftarrow E x$
Q: Find per solutions of $E-L$ eq A on a fixed level $E=C$ or some specified levels
much border
Further of + names!
Rabîlowitz, Benci, Figa Ul, Mane Abbondandolo,...
$\S 28$ Geodesies connective two points
- Morse Theory
- Very briefly

Lecture 16

- skipping most of R.G.
- Following Milnoz - a greet intro to R.G.
- A Brief Review: exp map e conj. points
$\exp : T_{p} M \longrightarrow M$
$v \longmapsto \gamma_{v}(1)$

$$
l=\|v\|
$$

$$
\begin{aligned}
& \gamma_{v}= \text { geodesic störtiy } \\
& \text { at } p \\
& \text { with } \dot{\gamma}_{v}(0)=v
\end{aligned}
$$

$$
\exp (v)=\gamma_{v}(1)
$$

M compact $\Rightarrow M$ is complete

$$
\begin{gathered}
\Rightarrow \exp \text { is olefined } \\
\text { and onto }
\end{gathered}
$$

Def. q is conjugate to p (along $r=\gamma_{v}$) if q is a critiol value of exp: ken $D \exp \neq 0$ at $v: q=\gamma_{v}(1)$

- multiplicity of q is dim ken $\left.D \exp \right|_{w}$

Ex. $\cdot \pi^{n}=\mathbb{R}^{n} / \Gamma \leftarrow$ lattice e.g. $P=\mathbb{Z}^{n}$

$$
\Gamma=e_{1} \mathbb{Z}+\ldots+e_{n} \mathbb{Z}
$$

\Rightarrow no conj. pts
covering mop $\mathbb{R}^{h} \rightarrow \pi^{h}$

- Move generally

$$
\begin{aligned}
& \text { sectional curvy } \leq 0 \\
& \Rightarrow \text { no conj. pb }
\end{aligned}
$$

- $\h with round metric
$\rightarrow q=-p$ conj to p along half-meridian

$$
\text { muff }=n-1
$$

$\rightarrow p$ is conj to itself oo $=p$ aloy whole meridian

$$
\text { mult }=n-1
$$

$$
q=-p
$$

round mete

a small perturbation of a round metric

Sard's \Rightarrow
The set of pts conj to p has zeno measure in M

Rum The set of pts conj to P need not be closed because T pM is not coupoct
Con For almost all $(p, q) \in M \times M$ $p \& q$ are not coujugote
E.g. In the round s^{h} toke any pair so that $q \neq \pm p$

- Morse Theory set up: Ω and E

$$
\begin{aligned}
\rightarrow \Omega & =\Lambda\left(M, p_{2} q\right) \\
& =\{\gamma:[0,1] \rightarrow M \mid \gamma(0)=p, \gamma(1)=q\} \\
& \text { abiter notetion }
\end{aligned}
$$

$\rightarrow E: \Omega \rightarrow \mathbb{R}$ the energy

$$
E(\gamma)=\int_{0}^{1}\|\dot{\gamma}(t)\|^{2} d t
$$

$\rightarrow \quad x$ is a critical pt of E if

$$
\left.\frac{d}{d t} E\left(\gamma_{s}\right)\right|_{s=0}=0 \quad \forall \text { any vaviation } \gamma_{s}
$$

Fact: $\gamma \in \operatorname{Cnit}(E) \Leftrightarrow \gamma$ is a clused geodesir connevtir ptog and peromitrised by $[0, i]$ ~avelength

Tangent space
$T_{\gamma} \Omega=v . f$ along γ vanishing at $p \& q$

$$
\gamma \text { Think } v=\left.\frac{\partial x_{s}}{\partial s}(t)\right|_{s=0}
$$ Every v comes from $\gamma_{s} \leftarrow$

Rum. We do not moke Ω into an inf dim manifold... This is just on interpretation.

The Hessian

$$
\gamma_{s}(t)=\exp _{r(t)}(s v)
$$

$\frac{\text { In finte dim's }}{v, w \in T_{x} P}, \quad f: P \rightarrow \mathbb{R}$
Comider $\underset{\substack{\text { w } \\ s^{\prime}}}{(-\varepsilon, \varepsilon) \times\left(-\varepsilon_{s}^{\prime}, \varepsilon\right)} \underset{\substack{w_{s}^{\prime} \\ s^{\prime}}}{\substack{u\left(s, s^{\prime}\right)}} \mathbb{P}$,

$$
\text { ct. } u(0,0)=x
$$

$$
\begin{equation*}
P \text { Pr } u\left(s, s^{\prime}\right) \quad \text { P-: Tonlar exp. } \tag{177}
\end{equation*}
$$

$$
\begin{aligned}
& \left.\frac{\partial u}{\partial s}\right|_{\substack{s=0 \\
s^{\prime}=0}}=v,\left.\quad \frac{\partial u}{\partial s^{\prime}}\right|_{\substack{s=0 \\
s^{\prime}=0}}=w \\
& \begin{array}{l}
s=0 \\
s^{\prime}=0
\end{array} \quad s^{\prime}=0 \text { Iud of } \\
& \left.d_{x}^{2} f(v, w)=\frac{\partial^{2} f}{\partial s \partial s^{\prime}} f\left(u\left(s, s^{\prime}\right)\right) \right\rvert\, \begin{array}{l}
u \text { but } \\
\text { only } \sigma, w \\
s=0 \\
s^{\prime}=0
\end{array}
\end{aligned}
$$

Likewite in inf dimensours
$v, w \in T_{r} \Omega$ v.f. along

Take $u\left(s, s^{\prime}, t\right)$ s.t.

$$
\begin{aligned}
& u(0,0, t)=\gamma(t) \\
& \left.\frac{\partial u}{\partial s}\right|_{\substack{s=0 \\
s=0}}=v(t) \\
& \left.\frac{\partial u}{\rho_{s}}\right|_{\substack{s=0 \\
s=0}}=w(t)
\end{aligned}
$$

E.g. $\quad u\left(s, s^{\prime}, t\right)=\exp _{r(t)}\left(s v_{t s^{\prime}} w\right)$
set

$$
d_{\gamma}^{2} E(v, w):=\left.\frac{\partial^{2} E\left(u\left(s, s^{\prime}, \cdot\right)\right)}{\partial s \partial s^{\prime}}\right|_{\substack{s=0 \\ s^{\prime}=0}}
$$

Ind of the voriation and is couplutely det by $v_{\text {f }}$ w. wher $\gamma^{\prime} \in \operatorname{Crit}(E)$, squumetrie

- Ken $d_{\sigma}^{2} E=\left\{v \mid d_{j}^{2} E(v, w)=0 \quad \forall w\right\}$

$$
\gamma \in \operatorname{Crit}(E) \text { is nou-des : ker }=0
$$

- $\operatorname{index}(X)=\max \operatorname{dim} V$

Pover all V s.t.

$$
\begin{equation*}
\left.d_{\gamma}^{2} E\right|_{v} \leqslant 0 \tag{178}
\end{equation*}
$$

Tim (see milnoris book)
) p,q not conjugate
$\Rightarrow E$ is Manse, i.l. all $\gamma \in$ hit (E) are nou-deg. Assume so
2) $\operatorname{index}(\gamma)=\#\{x$ conj to p on $\gamma\}$ counted with milt.

Ex

$$
\text { index }=n-1
$$

$$
\text { p to } q \text { to }-p \text { to } p \text { to } q
$$

Con index $<\infty$!

$$
\begin{aligned}
& \gamma_{0} \text { index }=0 \text { (min) } \\
& \gamma_{1} \quad \text { i. } d e x=n-1 \\
& \text { index }=2(n-1) \\
& \text {.... } \\
& \text { conj to } p: x_{1}=-p \\
& x_{2}=P
\end{aligned}
$$

Rok closed glodesoes

- All the def expend word-far-word
- Assume M is given a bumpy metre
- Part 1 of Thu is vacuous
- Part 2 is almost but not quite true
- One has to be careful:

Ken $\neq 0$ but $\operatorname{dim} \operatorname{Ker}=1$.

Rub Con equip Ω with the str of a Hilbert manifold by considering H^{\prime}-paths

- Finite-dim approximotion
- $P_{k} \subset \underbrace{M x \ldots x M}_{k}$ the space of all
$P_{1}=p$
with $\left.\sum \rho\left(p_{i}\right) P_{i+1}\right)^{2}<\varepsilon^{2}$
$P_{b}=$ Eounceting $p \& q$ Finitedim monibid sificently
- Fix a live partition

$$
0=t_{1}<t_{2}<\ldots<t_{k}=1
$$

of $\$$

- $\vec{p} \in P_{k} \leadsto a$ a brolen geodeste ξ with $\xi\left(t_{i}\right)=p_{i}$
perametrisel progortionally to the ave-linath
on $\left[t_{i-1}, t_{i}\right]$

$$
\Rightarrow \quad P_{k} \subset \Omega
$$

- $\left.E\right|_{P_{k}}=\sum \frac{e\left(P_{i-1} P_{i}\right)^{2}}{t_{i}-t_{i-1}}$
- Set $\Omega_{v}^{c}=\{\gamma \in \Omega \mid E(\gamma) \leqslant c\}$

$$
P_{k}^{c}=\left\{\xi \in P_{k} \mid E(\xi) \leqslant c\right\}
$$

Rmk $E(\gamma) \leqslant c \Rightarrow l(\gamma) \leqslant c^{1 / 2}$

$$
\text { Pf } \begin{aligned}
\int_{0}^{l}\|\dot{\gamma}\| d t & =\int_{0}^{1}\|\dot{\gamma}\| \cdot 1 d t \\
& \leqslant\left[\int_{0}^{1}\|\dot{\gamma}\|^{2} d t\right]^{1 / 2} \cdot\left[\int_{0}^{1} 1^{2} \cdot d t\right]^{1 / 2} \\
& =E(\gamma)^{1 / 2}
\end{aligned}
$$

So $x \in \Omega^{c}$ heve bounded leugth
Key pt: P_{k}^{c} is a vevy good approximotion of Ω^{c}

Prop (miluoz's book)

- Fix $c=$ reg. value of E.
- Asumme that $\left\{t_{i}\right\}$ is sufficiently fine, ε is sufficiently small and k is large (Depending on C)
\Rightarrow i) $P_{t}^{c} \longrightarrow \Omega^{c}$ is homotry eq In fact P^{c} is a deformation what of Ω^{C}

2) $\operatorname{Crit}\left(\left.E\right|_{\Omega^{c}}\right)=\operatorname{Crit}\left(\left.E\right|_{P_{k}^{c}}\right)$ $=$ true geodesics from p to q with $l(x) \leq \sqrt{e}$
3) \forall sech γ

- Ken $d_{\gamma}^{2} E=\left.\operatorname{Ken} d_{\gamma}^{2} E\right|_{p_{k}^{c}}$
- ind $d_{\gamma}^{2} E=$ ind $\left.d_{\gamma}^{2} E\right|_{p c}$

On the pe

1) We hove proved an analogue of 1) fan closed geodesics $E\left(\gamma^{\prime}\right) \leqslant C$ replaces conpectuers.
2) Similar to closed geodesics

A broken geodesre con be shortened of it has corners
3) Need to work ant an explicit formula fa $d_{\gamma}^{2} E$ (milnor)

Prop with a bit estiva work (1) + Mouse theory

Tho Assume peq are not conj
$\Rightarrow \Omega$ has homotopy type of an (infinite) ©W-complex with one macell for beck geodesic from p to q of in lex m.

Rub Could have worked with

$$
\varepsilon=\sum \rho\left(p_{i}, p_{i+1}\right)^{2}
$$

but the calurlation of $d_{\gamma}^{2} E$ is simpler fan E.
(We did not need it in LS theory)

Applicotion to topulogy

- Homology of Ω

Top digrevion
Fix p. How does $\Omega(p, q)$ depered on q?
It does nott, up to homotogy

$$
\begin{aligned}
& P=\{[0,1] \xrightarrow{\gamma} M \mid \gamma(0)=p\} \\
& \downarrow e v: \gamma \rightarrow \gamma(0) \leftarrow a \text { Sevve } \\
& M
\end{aligned}
$$

$$
\Rightarrow \Omega(p, q)=e^{-1}(q)<\text { all have the }
$$

same homotory type
\Rightarrow Can teke $q=p: \Omega(p, q)=\Omega_{p}=\Omega$ the basel laop spece
(This uot $\Lambda=$ the spece of free leops and $\underbrace{\text { Crit }\left(\left.E\right|_{\Omega}\right)}_{\text {qeoderir }} \neq \underbrace{\operatorname{Crit}\left(\left.E\right|_{\Lambda}\right)}_{\text {Closedgeodsios }}$

Rmb P is coutroctible

Eveny peth. cantrocts a low itself to P

Long exactegs vence

$$
\begin{aligned}
& \rightarrow \pi_{i}(\Omega) \rightarrow \pi_{i}\left(\mathcal{P}^{0}\right) \rightarrow \pi_{i}(M) \xrightarrow{\cong} \pi_{i-1}(\Omega) \longrightarrow \pi_{i}(P) \\
& \quad i>1 \quad \pi_{i}(M) \cong \pi_{i-1}(\Omega)-\text { used befove }
\end{aligned}
$$

Underatondiy $H^{*}(\Omega)$ and $H_{*}(\Omega)$ is imporbect in alg. topulogy.
Appliction Ω for $M=\delta^{h}$

Recall:
one geoderic Y_{k} of in des $k(n-1), k=0,1, \ldots$
$\Rightarrow \Omega$ has homotory bype of a couplex with exectly one cell of

$$
\operatorname{dim}=k(n-1), \quad k=0,1, \ldots
$$

$$
\text { Eon } H_{i}(\Omega)=\left\{\begin{array}{l}
\mathbb{E} \quad i=k(n-1) \\
0 \quad \text { otherwise } \\
n>2
\end{array}\right.
$$

Rms. The some is true when $n=2$, i.e. for $\2 but the argument is more involved. Need to show Hut $\partial=0$?
$\delta 29$ Application I: Bott's Periodicity $\frac{(\text { for Un)) Lecture } 17}{}$

$$
03 / 02
$$

Top Digression
Facts

$$
\begin{aligned}
\text { 1) } \quad v(n) \hookrightarrow & v(n+1) \\
\rightsquigarrow \quad \pi_{k}(v(n)) & \cong \pi_{k}(v(n+1)) \\
& \\
& k \leqslant 2 n-1
\end{aligned}
$$

2) $\quad \operatorname{SU}(n) \longrightarrow \mathbb{U}(n)$

Long exact

$$
\begin{aligned}
& \text { Long excl } \\
& \text { \& seq }
\end{aligned}
$$

$$
\Rightarrow \quad \pi_{k}(S \cup(n)) \cong \pi_{k}(v(n)) \quad k \geq 2
$$

Pf of 1$): \quad V(n+1)$ acts on $S^{2 n+1} \subset \mathbb{C}^{n+1}$ and $V(n)=\operatorname{stab}(\underbrace{\text { North Pole }})$
$\Rightarrow \quad U(n) \longleftrightarrow U(n+1) \ni A$

$$
\begin{aligned}
& \pi_{x+1} \sum^{2 n^{2}+1} \rightarrow \pi_{k} V(n) \rightarrow \pi_{k} V(n+1) \rightarrow \pi_{1} s^{2 n+1} \rightarrow \pi_{k-1}^{0} v(n) \\
& k+1<2 n+1
\end{aligned}
$$

set

$$
\begin{aligned}
U & =U U(n) \\
& =\xrightarrow{\lim _{m} U(n)} \\
& =\left\{\left(\begin{array}{ll}
\Psi_{0} & 0 \\
0 & v
\end{array}\right)\right\} \text { for some } n \\
\underbrace{\pi_{k}}_{\text {stable }} V & =\pi_{k} V(n)
\end{aligned} 2 n>k
$$

The (Bottles periodicity for -V)

$$
\pi_{1} v=\mathbb{Z}, \pi_{2} v=0, \pi_{3} v=\mathbb{Z}, \pi_{4} v=0
$$

Run \exists a similar periodicity forSO(n) but il's 8-periodic, \& mane unvotud

Pf. Following Milnon

- skipping one diff. geometry step

Note: con veplace $V(n)$ by $S \forall(n), k>1$

$$
\bar{u}_{k} v=\bar{u}_{k} 5 v
$$

A bit more topology:

$$
\begin{aligned}
& \text { Gr }_{m}(2 m) \\
&=\left\{m \text {-dim } \mathbb{C} \text {-subspaces in } \mathbb{C}^{2 m}\right\}
\end{aligned}
$$

Fact: $\quad \pi_{i} \operatorname{Cn} m(2 m) \cong \pi_{i-1} U(m)$

$$
i \leqslant 2 \mathrm{~m}
$$

Pf \| Two fibrotions:

b) $\Psi(m) c U(2 m) / U(m)$

$$
\begin{aligned}
& \qquad \\
& V(2 m) / V(m) \times V(m)=\operatorname{Gr}_{m}(2 m) \\
& \Rightarrow \pi_{i} \operatorname{Gn}_{m}(2 m) \cong \pi_{i-l} V(m) \\
& i \leqslant 2 m
\end{aligned}
$$

Lowen-dim calculations

- $\pi_{2} v({\underset{q}{2}}^{2} \cong \pi_{2} \underbrace{s u(2)}_{\tilde{\rho}^{3}}=0$

Rumb. $\pi_{2}\left(\right.$ any $L_{\text {ir }}$ gp $)=0$

Now the key port: Mors Theory
Metric on $S U(n)$ on $V(n)$
Equip SU(n) with the Killing metric

- biinvoriant
- On $T_{I} S U(n)=\operatorname{mn}(n) \quad\left(a r T_{I} U\right):$

$$
=\left\{A \mid A^{*}=-A, \operatorname{tv} A=0\right\}
$$

$$
\langle A, B\rangle=\operatorname{tr} A B^{*}
$$

Conj. invariant \Rightarrow right (on left) translation is bi-inv

$$
\begin{aligned}
& \cdot \exp (A)=I+A+\frac{1}{2} A^{2}+\frac{1}{3!} A^{3}+\ldots \\
& \Omega(I,-I, \operatorname{sU}(2 m)) \sim \Omega_{I}(\operatorname{su}(2 m))
\end{aligned}
$$

Lemma l: The space of minimizing geodesics frow I to $-I$ is homed (diffed) to $G_{r_{m}}(2 \mathrm{~m})$

Lemma 2: Every non-minizing geodesic from I to -I has morse index $\geqslant 2 m+2$

Rok - I is conj to I

$$
\begin{aligned}
\text { index }: & =\text { maxis } \operatorname{dim} V \\
& d_{\gamma}^{2} E l_{V}<0 \\
& \text { accounting for deg }
\end{aligned}
$$

- Weill prove Lemur 1.
- Lemma $2 \rightarrow$ milwor (need more did. geom..) Sounds reasonable: think of su(2m) as samithig like the sphere:
longer glodestes get a lot of conj. pts. (see the pf
- Lemmas I\& $2 \Rightarrow$ Bott's periodicity

$$
\pi_{k} \Omega(I,-I, S \cup(2 m))=\pi_{k} \Omega_{I}(S \cup(2 m))
$$

Lemmas \rightarrow SH $k \leqslant 2 m$

$$
\begin{aligned}
& \pi_{k} G r_{m}(2 m) \\
& S \| k \leqslant 2 m \\
& \pi_{k-1} S U(2 m)
\end{aligned}
$$

Using the calurlation of $\pi_{k} \longrightarrow$ for $k=1 \& 2$ we learn whit this groups ave.

Pf of Lemma 1

$$
\begin{array}{ll}
\gamma_{A}(t)=\exp (t A) & n=2 m \\
A \in T_{I} s \cup(h): A^{*}=-A, \operatorname{tr} A=0
\end{array}
$$

$\Rightarrow A$ is diagonalizeble by a unitavy tranif

$$
B A B^{-1}=\left(\begin{array}{ccc}
i \pi a_{1} & & \\
\ddots & 0 \\
0 & \ddots & \\
0 & \ddots \pi a_{n}
\end{array}\right), B \in \vec{O}(n)
$$

Letes say A itselt has this foum

$$
\gamma_{A}(1)=\exp (A)=\left(\begin{array}{lll}
e^{i \pi a_{1}} & & \\
& & 0 \\
\\
0 & & \ddots \\
& & \\
& e^{i \pi a_{4}}
\end{array}\right)
$$

- $\exp (A)=-I \Leftrightarrow$ all $a_{j}=$ odd in bevgevs

$$
\text { - } \begin{aligned}
l\left(\gamma_{A}\right) & =\int_{0}^{1}\|A\| d t=\|A\| \\
& =\pi \sqrt{a_{1}^{2}+\ldots+a_{n}^{2}}
\end{aligned}
$$

$\Rightarrow \gamma_{A}$ is al minimaziy geodesic

$$
\Leftrightarrow \text { all } a_{j}= \pm 1
$$

- But tr $\quad \sum a_{j}=0$, $n=2 m$

$$
\Rightarrow \quad m \text { of } a_{j}=-1 \& m \text { ave }+1
$$

Rink This is the regor to work with $S U(2 \mathrm{~m})$ but not $V(n)$
$A \leadsto L \subset \mathbb{\sigma}^{2 n-1}, \quad L \in \operatorname{Grm}_{m}(2 m)$
A span of eigenvectors with eisk value -1
$\left\{\begin{array}{c}\text { mivimizily } \\ \text { geodesics }\end{array}\right\}$

$$
\left\{\begin{array}{l}
\downarrow \\
\{A\} \\
\\
\operatorname{Con}_{m}(2 m)
\end{array}\right.
$$

Rink This also suggests why Lewma 2 is true: then $\left|a_{j}\right| \geqslant 3$ for at least one a_{j}. This turns ant to imply a must conj pts along such a geodesic. (Non-dbviens)
§30 Applicetion II: Lefschetz Hyperplane
sechion Thm
Also in Milna but bexe we do a slightly diftevent pf should veally
Recall from couplex analysis:

- F: $\underset{\mathbb{E}^{m}}{\cup_{\mathbb{E}^{n}}} \rightarrow \underset{\hat{E}^{n}}{V}$ is holoworphie if

$$
\begin{aligned}
& D F \circ J=J_{0} D F @ \text { evevy }{ }_{\text {" }}{ }^{D} J=i \\
& D F \in M_{m \times n}(\mathbb{C})
\end{aligned}
$$

\Leftrightarrow all components of F setisity $C R$ with respect to every vowible (and F is $\mathrm{Cl}^{\text {? }}$?)

- complex menifolds ave just like smooth monifolds but smooth maps, clarts, ete are replaod by hol meps
Rnuk Couplex manifold never hove bounderg: eithr open or closed.
E.g.) The system of equehions

$$
\begin{cases}f_{1}=0 & f_{j}: \mathbb{C}^{h} \rightarrow \mathbb{C} \text { hol } \\ \vdots & \text { gives a couplex sulswowl, } \\ f_{k}=0 & \text { pronided tht } d f_{j} \text { ave } \\ & \text { lin.ind af every pt }\end{cases}
$$

2) Some true in $\mathbb{P} P^{4}$ when fj a hom. polykomials
We'll also need

$$
f(\lambda z)=\lambda^{d} f(z)
$$

Fact

$$
M \subset \mathbb{R}^{k}
$$

The function $f(x)=u x-p u^{2}$ is Movse on M for ollmost all

$$
p \in \mathbb{R}^{2}
$$

1In porticular this is true fon couplex submonitolds of \mathbb{E}^{k}.

In whot follows we 'll always annme thet $p=0$ and $f(x)=\|x\|^{2}$ is Dhouse.
In fect we heve proved thi)
see next page
$M \subset \mathbb{R}^{k}$

$$
h_{v}(z)=\left\langle x_{i} v\right\rangle: \text { pvoj } b \sigma \mathbb{R}
$$

$\downarrow f$ \mathbb{R}^{h}
\mathbb{R}
whit we hove shown is the:
For almost all $v \in \mathbb{R}^{L}$
$f+h_{v}$ is norse on M
But

$$
\begin{aligned}
& f f(x)=\|x\|^{2} \\
& \begin{aligned}
f(x)+h_{v}(x) & =\langle x, x\rangle+\langle x, v\rangle \\
& =\left\langle x+\frac{1}{2} v, x+\frac{1}{2} v\right\rangle-\frac{1}{4}\|v\|^{2}
\end{aligned} \\
& \Rightarrow\left\langle x+\frac{1}{2} v, x+\frac{1}{2} v\right\rangle \text { is House }
\end{aligned}
$$

Con veplau 0 by any pt.

Thm $M^{m} \subset \mathbb{C}^{n}$ couplex subenouifoll
\Rightarrow evevy critical pt of $f(x)=\|x\|^{2}$ on M has index $\leq m$
Con Assume Quat M is proper
(Mn any compets is conpet)
$\Rightarrow M$ has homotopy type of m-dim $C W$ couplex (perheis)

Mors theory
Disusion

- Here $\quad m=\operatorname{dim}_{\mathbb{C}} M, \quad 2 m=\operatorname{dim}_{H R} M$
- \mathbb{a}^{h} has no closed couplex submonifolds
\Uparrow (it it did, Thm would be wrongl Max principle: projt of M to aky coord is a hal function
M closed $\Rightarrow f=$ coust by max primiple
- The asertion is ersentially local

Only need to heve a ubd
of a crílial pt.

Pf $\cdot f: M^{m} \rightarrow \mathbb{R} \quad f(x)=u x \|^{2}$, mouse
Calculation $\quad \mathbb{E}^{n}$

$$
\underbrace{T_{p} M} \subset \mathbb{C}^{n-1} c T_{p} \$^{2 n-1}
$$

$$
\underbrace{a^{m}}_{\left(z_{1}, \ldots, z_{m}\right)} \underbrace{\left\{z_{1}, \ldots, z_{n-1},\right.} y_{n}\}
$$

- Near p : M is a grope of

$$
\begin{aligned}
& \text { a map } \mathbb{z}_{n m} \xrightarrow[\mathbb{C}_{n+1}^{m}]{\longrightarrow} \mathbb{C}^{n-m} \\
& S=\left(z_{1}, \ldots, z_{m}\right) \mapsto\left(g_{1}, \ldots, g_{n-m}\right) \longrightarrow \text { to } z_{n} \\
& \text { - } g_{k}(0)=0, k<n-m \\
& \text { - } g_{n-m}(0)=1 \\
& d g_{k}(0)=0
\end{aligned}
$$

$$
\begin{gathered}
f(s)=\sum_{j=\frac{\sum_{Q_{0}}^{m}\left|z_{j}\right|^{2}}{w_{0}} \sum\left|g_{k}\right|^{2}=\sum_{j=1}^{w}\left|z_{j}\right|^{2}}^{k<n-m \Rightarrow g_{k}(s)=O\left(|s|^{2}\right)} \begin{array}{c}
\Rightarrow\left|g_{k}\right|^{2}=O\left(|\zeta|^{4}\right)
\end{array}
\end{gathered}
$$

\Rightarrow does not coulibute to $d^{2} f$

$$
\begin{aligned}
& k=n-m, \quad g_{n-m}=1+O\left(|s|^{2}\right) \\
& \begin{array}{l}
g=g_{n-m}=1+\underbrace{\sum c_{e q} z_{e} z_{q}}_{H: \mathbb{C}^{m} \rightarrow \mathbb{C} \text { a complex quadratic }}+\ldots \\
\end{array} \\
& |g|^{2}=1+\underbrace{H+\bar{H}}_{Q_{1}}+\ldots \\
& \text { form } \\
& d_{p}^{2} f=Q_{0}+Q_{1} \\
& Q_{1}=H+\bar{H}: \mathbb{R}^{2 k n} \rightarrow \mathbb{R} \\
& Q_{1}(z)=H(z)+\overline{H(z)} \\
& =2 \operatorname{Re} H(z)
\end{aligned}
$$

claim: index $Q_{1} \leq m$
To be more precise $\mathbb{R}^{2 m_{4}}=\underbrace{V_{0} \oplus V_{+} \oplus V_{-}}_{\text {artogowel }}$
aced $Q \mid V_{0}=0$
ave $Q \mid v_{0}=0$

$$
\begin{aligned}
& Q_{1} \mid V_{ \pm} \geqslant 0 \\
& \operatorname{dim} V_{+}=\operatorname{dim} V_{-}
\end{aligned}
$$

claim \Rightarrow Tho

$$
\underset{v_{0}}{Q_{0}}+\left.\underset{v_{1}^{\prime}}{Q_{1}}\right|_{v_{0} \oplus V_{t}}>0
$$

and $\operatorname{dim}\left(V_{0}+V_{+}\right) \geqslant m$

$$
\Rightarrow \quad \operatorname{ind}\left(Q_{0}+Q_{1}\right) \leq m
$$

Pf of the Claim
Diagonalize H :

$$
B H B^{T}=\left(\begin{array}{lll}
1 & \ddots & 0 \\
& 1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad B \in E L(m, \mathbb{C})
$$

$L=$ eisensped

- eignvalere 0: Q, $L_{L}=0$
L goes into V_{0}
- eigenvalue 1: $L=\mathbb{C}=\mathbb{R}^{2}, \quad z=x+i y$

$$
\begin{aligned}
Q_{1}(z)=z^{2}+z^{-2} & =2 \operatorname{Re} z^{2} \\
& =x^{2}-y^{2}
\end{aligned}
$$

x-axis goer into V_{+}
y-axis goes into V_{-}

Pf I- Symplectic geomehrical

- Real symplectir form en $\mathbb{R}^{2 n}=\mathbb{C}^{n}$

$$
\begin{aligned}
\omega & =\sum d x_{k} \wedge d y_{k}
\end{aligned}=\frac{i}{2} \sum d z_{k} \wedge d \bar{z}_{k} .
$$

- $f=\frac{1}{4} \sum\left(x_{k}^{2}+y_{k}^{2}\right)=\frac{1}{4} \sum\left|z_{k}\right|^{2}$

$$
d f=\frac{1}{2} \sum\left(x_{k} d x_{k}+y_{k} d x_{k}\right)
$$

- J acts on $T\left(\mathbb{R}^{2 m}=\mathbb{C}^{k}\right)$
as mulloplication by i
$\Rightarrow J$ acts on $T^{*}\left(\mathbb{R}^{2 n}=\mathbb{C}^{k}\right)$

$$
J=\left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right) \quad 0
$$

us $(J \alpha)(v)=-\alpha(J v)$

$$
J d f=\frac{1}{2} \sum\left(x_{L} d y_{k}-y_{k} d x_{k}\right)=\lambda
$$

Checking: $(J d f)\left(\partial_{x_{k}}\right)=-d f\left(J \partial_{x_{k}}\right)=-d t\left(\partial_{y_{k}}\right)$ $(J d f)\left(\partial_{y_{k}}\right)=-d^{\prime}\left(\partial \partial_{y_{k}}\right)=-d t\left(-\partial x_{k}\right)$

$$
\Rightarrow \omega=d(J d f) \text { on } \mathbb{C}^{n}=\mathbb{R}^{2 h}
$$

- Mce \mathbb{E}^{n} conplex submonitold

$$
\left.\Rightarrow \frac{J: T M \supseteq}{\left.\omega\right|_{M}=d\left(\left.J d f\right|_{M}\right)} \quad \lambda\right|_{M}=\left.J d f\right|_{M}
$$

- Lionville v.f.
X on M for $\lambda 1 m$

$$
\begin{aligned}
i_{x} \omega & =\lambda \\
\Rightarrow \quad L_{x} \omega=\omega: \quad L_{x} \omega & =d_{i x} \omega+i x d \omega \\
& =d \lambda=\omega
\end{aligned}
$$

The flow φ_{t} of X stretches w :

$$
\varphi_{t}^{*} \omega=e^{t} \omega
$$

$$
\begin{aligned}
& \text { • } \quad \lambda=J d f: \\
& w(x, v)=-d f(\underbrace{J v}_{w}) \quad\langle,\rangle=w d f \\
& \underbrace{w(x,+J w)}=+d f(w) \\
&\langle x, w\rangle \cdot) \\
& \Rightarrow \quad x=d f(w):\langle x, \cdot\rangle=d f
\end{aligned}
$$

Purchline
$p \in \operatorname{Grit}(f$ on $M), \quad \omega_{p}$

$$
D \varphi_{t}^{*} \omega_{p}=e^{t} \omega_{p} \quad o_{n} \quad T_{p} M=\mathbb{R}^{2 m}
$$

$$
v, w \in T_{p} M
$$

$$
\begin{equation*}
\omega\left(D \varphi_{t} v, D \varphi_{t} w\right)=e^{t} \omega(v, w) \tag{x}
\end{equation*}
$$

$V \subset T_{p} M$ be such thet? stable $\left.\left.d_{p}^{2} f\right|_{v} \leq 0\right\}$ monitold"

$$
v, w \in V \Rightarrow D \varphi_{t} v, D \varphi_{t} w \underset{\rightarrow}{\rightarrow}<0
$$

or at most qrow polywmially as $t \rightarrow \infty$
$\Rightarrow \omega\left(D \varphi_{t} \sigma, D \varphi_{t} \omega\right)$ connot qrow exp in $(*)$

$$
\Rightarrow w(v, w)=0 \quad \forall v, w \in V
$$

$\Rightarrow V$ is isotropr

$$
\Rightarrow \operatorname{dim} V \leq m
$$

Rmk B.th pfs don't weed non-deg.
In both coses ind:= max $\operatorname{dim} v \geqslant m$

$$
\left.d^{2} f\right|_{E}>0
$$

Geometrically, asuming non-degenevocy

- $w^{s}(p)=: w=$ stoble manitold of f for

$$
x=\nabla f
$$

- $Y_{t}=$ grad flow $=$ flow of x

$$
\left\{\left.\cdot \varphi_{t}^{k} \omega\right|_{w}=\left.e^{t} \omega\right|_{w}\right.
$$

- But y^{t} cortroch W to a pt
$\omega)_{w}=0$ i.e. w is isotropie

$$
\Rightarrow \quad \operatorname{dim} w \leq m
$$

Back to the Lefschetz hyper place section thm
setting

$$
\begin{aligned}
& M^{n} \subset \underset{\cup}{\square} \quad \text { couplex subuouitold (clored) } \\
& \text { Lby det. alguraic) } \\
& H=\mathbb{C} P^{n-1} \leftarrow \text { hypeuplone } \\
& M \nrightarrow H \Rightarrow \underbrace{M a H C H} \\
& \text { couplex submonifolds in } H=\mathbb{C} P^{n-1}
\end{aligned}
$$

The Lefschetz hyperplane section thm:

Thm M is obteined from $M n H$ by attaching cells of $\operatorname{dim} \geqslant m$

$$
\text { Thm } \cdot H_{k}(M \cap H) \stackrel{\simeq}{\leftrightarrows} H_{k}(M) \text { if } k<m-1
$$

- $H_{m-1}(M \cap H) \underset{\text { onto }}{\rightarrow} H_{m-1}(M) \quad($ both over $\mathbb{Z})$
- $\pi_{r}(M, M n H)=0 \quad r<m$
long exact sequence (Lefschetz duality?)

Pf. Recall

$$
\begin{aligned}
\mathbb{C} P^{n} \backslash\left(H=\mathbb{C} P^{n-1}\right) & =\mathbb{P}^{n} \text { holomorphically } \\
& \sim B^{n} \text { u metrically y } \\
& (\text { not literally) }
\end{aligned}
$$

Pick $0 \in \mathbb{C} P^{h} i H$ (qewerir)

- $\exists h: \mathbb{E P} \rightarrow \mathbb{R}$ such that

$$
\text { - }\left.h\right|_{H}=\min h=0 \quad\left\{\begin{array}{l}
E \cdot g . \\
(\text { dist to }+1)^{2}
\end{array}\right.
$$

$$
\text { - } h(0)=\operatorname{mex} h=1
$$

would do.

$$
h(z)=-g \cdot f(z), \quad f(z)=\|z\|^{2}
$$

- $\left.h\right|_{M}$. attains min on $M n H=0$
- Mouse outside Mn (bor a genenr chose of 0) with only finitely many crit pts.
Rank Gu moke sine hin is morse ${ }^{\text {Prot }}$
- M is obtained from

$$
\begin{aligned}
\{h \leqslant \varepsilon\} & =\text { small tab. who of } M n+1 \\
& \sim M \cap t l
\end{aligned}
$$

by attaching a cell of

$$
\begin{aligned}
& \text { dim }=\operatorname{index}(h \text { at } p \text {) } \\
& \text { for every } p \in \underbrace{\operatorname{Cnrit}(h \text { ar } M y M \cap H)} \text {) } \\
& \text { it }(f \text { on } M \backslash(M \cap H)) \\
& \text { and ind } h=2 m-\underbrace{\text { ind } f}_{\hat{m}} \geqslant m
\end{aligned}
$$

