§25 Infinite-dim approach Lecture 15 $02 / 23$

Recall
Very briefly
Sobolev spare (not cohomology) of H^{\prime}-functions on S^{\prime} : $H^{\prime}\left(\frac{\delta}{\prime}, \mathbb{R}\right)$
Abs. continuon functions f such the f^{\prime} is L^{2}
Hilbert space with the inner product

$$
\langle f, g\rangle_{H^{\prime}}=\langle f, g\rangle_{L^{2}}+\left\langle f_{1}^{\prime}, g^{\prime}\right\rangle_{L^{2}}
$$

Ruin Con also define os

$$
\begin{equation*}
\langle f, g\rangle_{H^{\prime}}^{\prime}=f(0) q(0) t\left\langle f^{\prime}, g^{\prime}\right\rangle_{L^{2}} \tag{g}
\end{equation*}
$$

Different product but "equivalent"
Likewise: f con tale values in HR
Deft $\Lambda=H^{\prime}$-maps $\quad \gamma: \rho^{\prime} \rightarrow M$ $\gamma \bar{\gamma}$ is abs. continuous closed Ricmenus $\dot{\gamma}$ is L^{2} :

$$
\int_{\$^{\prime}}\|\dot{\gamma}(t)\|^{2} d t<\infty
$$

Fact Λ is a Milbert mavifold (modeled on $H^{\prime}\left(\$^{\prime} \rightarrow \mathbb{R}^{2}\right)$

Tangent space:

Ref Klingenbevg "Lectures on closed geodestes"
Chop $1 \& 2$ (ex caubion)
Iruportant

$$
\begin{gathered}
E: \Lambda \longrightarrow \mathbb{R} \text { is delrinad \& smooth } \\
E(\gamma)=\frac{1}{2} \int_{0}^{1} x \dot{\gamma} u^{2} d t
\end{gathered}
$$

Elements of a love junt enougk smooth nen

Key pt: one can do basic LS for E on Λ
steps (withant pts)

- Anti-grad How for $\nabla_{H} E$ is defined on A for $t \geqslant 0$
- E sohisfies th PS condition II
$\left\{\begin{array}{l}\Rightarrow \text { min } E \text { is attained on every } \\ \text { connected component } \\ \Rightarrow \text { Corotenstheovers } \\ \text { and }\end{array}\right.$

$$
\begin{cases}\Rightarrow & \text { minimox holds } \\ \Rightarrow & \text { Lusterkik-Fet tum }\end{cases}
$$

Important auk

- E would still be defined it we required more smooth ken for elements of $1 \quad H^{k>1}$-Soboleo space
- But PS condition would than buek down

Under lying Principle:
In all problems of this type require as little smoothness as necessary to hove the function defined.
E.g. For the action fractional one would have to work with $H^{1 / 2}$.

Important underlying features of E tut make things work

- E is bounded from be low
- At every $\quad x \in C_{n i t}(E)=$ closed geodorie $d_{\gamma}^{2} E$ has

$$
\left\{\begin{array}{l}
\rightarrow \text { finite } \# \text { of neg squeezes } \\
\quad(\text { finite index) } \\
\rightarrow \text { finite nullity }
\end{array}\right.
$$

Not always true: eng. fails for the action functional on $\mathrm{H}^{t_{2}}$
\Rightarrow Huge difficulties

Rat (Bumpy Metrics)

- In general, E ar el are not Movie
- A closed geodesic \forall is uou-deg if it's nou-deg as a periodic orbit of the geodesic flow on its level
$\Leftrightarrow d_{\gamma}^{2} E$ is nou-deg in the hovse-Bott
- Far a co-geveric metric all closed geodesics ave wou-deg $(\Leftrightarrow E$ or b is Mouse)
such metrics ave celled Bumpy Metrics
Abraham (1970) - without conglete pf Anosor (1983) - complete pf

\Rightarrow a bumpy metro hes © many prime geodeses
can be eliminated
(Gromoll-meyon a73?)

Not true for sn. Not known if every metric on s^{3} has ∞ neong prion geodesics.
§26 A quick glonce at other ealunlas of variahious questious

Recap: whet we hove leorned

$$
M \text { a R.m. }<,>=R, m
$$

$$
\begin{aligned}
& L: T M \rightarrow \mathbb{R} \leftarrow a \text { Lagrongiau } \\
& \left.(q, v)=\frac{1}{2}<v, v\right\rangle q \quad \text { Fix } T>0 \\
& E(\gamma)=\int_{0}^{T} L\left(\gamma, \gamma^{i}\right) d t \\
& E: A \rightarrow R R, \Lambda=\{S=\mathbb{R} / T \mathbb{Z} \rightarrow M\}
\end{aligned}
$$

$\operatorname{lrit}(E)=$ closed gesdesics
perametrized by [0, T]
nare length

Solutions of:

$$
\nabla_{\dot{j}} \dot{\gamma}^{i}=0 \leftarrow \text { accelevation }
$$

Goverus the motion of a unit mass pozticle confined to m

Carton \& Lusternik-Fet

$$
\Rightarrow \text { Existence }
$$

Other types of Lagrangians
(1) $L(q, v)=\frac{1}{2}\langle v, v\rangle_{q}-V(q)$

Potential $V: M \rightarrow \mathbb{R}$ on $V: M \times, S^{\prime} \longrightarrow \mathbb{R}, ~$
energy $\mathbb{R}^{2} / T \geq$

$$
\left\{\begin{array}{l}
\text { same } 1 \\
\mathcal{L}(\gamma)=\int_{0}^{T} 2(\gamma, \dot{\gamma}) d t
\end{array}\right.
$$

$$
\operatorname{Crit}(\mathcal{L})=
$$

$$
\begin{aligned}
& \gamma: \delta^{\prime} \rightarrow M \\
& \nabla_{\dot{\gamma}} \dot{\gamma}^{\circ}=-\nabla V \leftarrow \text { Force }
\end{aligned}
$$

Governs the motion of a unit man particle on M, ext. force $F=-\nabla V$.

$$
\frac{1}{2}\langle v, v\rangle+\left\langle v ; g^{-1}(\alpha)\right\rangle-v
$$

(2)

$$
L(q, v)=\frac{1}{2}\langle v-\alpha, v-\alpha\rangle_{q}-\nabla v
$$

\checkmark the same: potential energy
$\alpha \in \Omega^{\prime}(M)$: magnetic potential

$$
\operatorname{lnit}(\mathscr{L})=\gamma: s^{\prime} \rightarrow \mathbb{R}
$$

$$
\nabla_{\dot{j}} \dot{\gamma}=-\nabla V+\underbrace{F(\dot{\gamma}, \dot{\gamma})}_{\text {Lorentz Force }}
$$

$$
\begin{array}{ll}
F(q, v):=g^{-1} i_{j} d \alpha & \operatorname{RmL}: \operatorname{orl}(y \\
& i_{v} \\
F: T M \xrightarrow{i_{v}} T^{*} M \xrightarrow{g^{-1}} T M & \text { meters } \\
(v, q) \longrightarrow i_{j} d \alpha \longmapsto F &
\end{array}
$$

$$
d \alpha=\text { magneto field }
$$

Ex a) $B=$ magnetic field is \mathbb{R}^{3}

$$
\|_{d \alpha}=i_{B} \frac{(\underbrace{}_{d v_{0} l}}{\text { Mradyndz }}<\text { Maxwell }_{\text {closed }}^{\text {Mex }}
$$

$$
F(q, v)=B \times v \text { at } q
$$

b)

$$
\begin{aligned}
& w=B d x a d y \text { in } \mathbb{R}^{2}, B: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& =d \alpha \text { at } q \\
& F(q, v)=B \cdot J v \text { at }
\end{aligned}
$$

Governs the motion of a unit mans, unit doves particle on M, ext. force $F=-\nabla V$, and magnetic field $d \alpha$.
Ex. Deter mine the flow on \mathbb{R}^{2} when $B=$ cost.
3) Move generally:

$$
L: T M \longrightarrow \mathbb{R} \quad \text { sot. }
$$

on $L: T M \times \underbrace{\oint^{\prime}}_{\mathbb{R} / T \mathbb{Z}} \longrightarrow \mathbb{R} \quad$ Eg.
a) fiberwise convex

$$
L(q, \sigma) \geqslant A \| v u-B
$$

b) quadratic or superlinean

$$
\int_{\text {exact coudihious vary }} \text { growth as } \quad \text { (Tonelli Lager) }
$$

ReL. When L is time-depekdient and T-periodic on time, $\gamma: \xi_{T}^{T}=\mathbb{R} / T \mathbb{Z} \rightarrow M$ some T. Con set $-T=1$, but doit wont to yet.

Goal: Existence of Crit (2)

$$
\mathcal{L}(\gamma)=\int_{0}^{T} L(\gamma, \dot{\gamma}) d t
$$

Solutions $\gamma: s^{\prime \prime} \longrightarrow M$ of the
Euler - Lagrange equation:

$$
\frac{d}{d t} \frac{\partial L}{\partial v}(\gamma, \dot{\gamma})=\frac{\partial L}{\partial q}(\gamma, \dot{\gamma})
$$

Thm (Benci, 86$) \leftarrow$ sawple resset

- $\pi_{1}(M) \neq 1 \Rightarrow$ sol in every \neq trivial free houobrply class
- $\bar{w}_{1}(M)=1 \Rightarrow$ inf mony cocitrachible

T-periolic soles γ_{k}
Monever: $\mathcal{L}\left(\gamma_{k}\right) \rightarrow \infty$
this is whut mokes it mwy ikbresh. In some $\left.\frac{\text { sels }}{\left(\frac{002 e}{}\right)} \mathrm{f}_{k}\right\}$ ave distinct (loose)

Runk: \rightarrow nu longen hove the notion of trivial (const) US nor-trivial (won-const) sol
\rightarrow Fon geodersic flow get reporametrizetien of the some iteroled geodeste:

$$
\begin{aligned}
& \gamma_{1}, \gamma_{2}, \gamma_{3}, \ldots \\
& r_{2}(t)=\gamma_{1}(2 t), \gamma_{3}(t)=\gamma_{1}(3 t), \ldots
\end{aligned}
$$

On the pf
\rightarrow Fix a background R.M.
\rightarrow The H^{\prime}-anti-qvad-flow for \mathcal{L} is defined for all $-L \geqslant 0$
\rightarrow P.S. condition is sohisfied

- $\pi_{1}(M) \neq 1$: Exactly as fan geodesics in $\S 25$:
minimise \mathscr{L} or $\lambda_{\alpha \neq 1}$
- $\bar{D}_{1}(M)=1$. To get just one solution could again just mininigl
To get ∞ mong, find a seq
of classes

$$
\beta_{k} \in H_{m_{k}}(\Lambda ; \mathbb{R}) \quad m_{k} \rightarrow \infty
$$

PS
\Rightarrow minimox orbits γ_{k}
However β r's ave not supported in the lower energy regions.
of Λ : energy for some R.M.

$$
\beta_{k} \notin \operatorname{im}\left(H_{*}\left\{E<c_{k}\right\} \rightarrow H_{*}(\Lambda)\right)
$$

for some $C_{k} \rightarrow \infty$

$$
\Rightarrow \mathscr{L}\left(x_{k}\right) \rightarrow \infty
$$

Run
A quick digression: A fixed energy problem

- Sofar we looked for periods orbits of a fixed period
But one can look for periodic orbits with "fixed energy" - (and much bible herder)
- Assumption:
$L=$ independent of time
set $H(q, v)=\frac{\partial L}{\partial v} \cdot v-L$
Then $E-L \Rightarrow \frac{d}{d t}(H(r, \dot{\gamma}))=0$
\Rightarrow Trajectories on the some level of t (oourpact) $\leftarrow E x$
Q: Find per solutions of $E-L$ eq A on a fixed level $E=C$ or some specified levels
much border
Further of + names!
Rabîlowitz, Benci, Figa Ul, Mane Abbondandolo,...
$\S 27$ Geodesies connective two points
- Morse Theory
- Very briefly

Lecture 16

- skipping most of R.G.
- Following Milnoz - a greet intro to R.G.
- A Brief Review: exp map e conj. points
$\exp : T_{p} M \longrightarrow M$
$v \longmapsto \gamma_{v}(1)$

$$
l=\|v\|
$$

$$
\begin{aligned}
& \gamma_{v}= \text { geodesic störtiy } \\
& \text { at } p \\
& \text { with } \dot{\gamma}_{v}(0)=v
\end{aligned}
$$

$$
\exp (v)=\gamma_{v}(1)
$$

M compact $\Rightarrow M$ is complete

$$
\begin{aligned}
& \Rightarrow \exp \text { is defined } \\
& \text { and onto }
\end{aligned}
$$

Def. q is conjugate to p (along $r=\gamma_{v}$) if q is a critiol value of exp: ken $D \exp \neq 0$ at $v: q=\gamma_{v}(1)$

- multiplicity of q is $\left.\operatorname{dim} k e n D \exp \right|_{v}$

Ex. $\cdot \pi^{n}=\mathbb{R}^{n} / \Gamma \leftarrow$ lattice e.g. $P=\mathbb{Z}^{n}$

$$
\Gamma=e_{1} \mathbb{Z}+\ldots+e_{n} \mathbb{Z}
$$

\Rightarrow no conj. pts
covering mop $\mathbb{R}^{h} \rightarrow \pi^{h}$

- Move generally

$$
\begin{aligned}
& \text { sectional curvy } \leq 0 \\
& \Rightarrow \text { no conj. pb }
\end{aligned}
$$

- $\h with round metric
$\rightarrow q=-p$ conj to p along half -meridian

$$
\text { muff }=n-1
$$

$\rightarrow p$ is conj to itself oo $=p$ aloy whole meridian

$$
\text { mult }=n-1
$$

$$
q=-p
$$

round mete

a small perturbetien of a round metric

Sard's \Rightarrow
The set of pts conj to p has zeno measure in M

Rum The set of pts conj to P need not be closed because TM is not coupoct
Con For almost all $(p, q) \in M \times M$ $p \& q$ are not coujugote
E.g. In the round s^{h} toke any pair so that $q \neq \pm p$

- Morse Theory set up: Ω and E

$$
\begin{aligned}
\rightarrow \Omega & =\Lambda\left(M, p_{2} q\right) \\
& =\{\gamma:[0,1] \rightarrow M \mid \gamma(0)=p, \gamma(1)=q\} \\
& \text { abiter notetion }
\end{aligned}
$$

$\rightarrow E: \Omega \rightarrow \mathbb{R}$ the energy

$$
E(\gamma)=\int_{0}^{1}\|\dot{\gamma}(t)\|^{2} d t
$$

$\rightarrow \quad x$ is a critical pt of E if

$$
\left.\frac{d}{d t} E\left(\gamma_{s}\right)\right|_{s=0}=0 \quad \forall \text { any vaviation } \gamma_{s}
$$

Fact: $\gamma \in \operatorname{Cnit}(E) \Leftrightarrow \gamma$ is a clused geodesir connevtir ptog and peromitrised by $[0, i]$ ~avelength

Tangent space
$T_{\gamma} \Omega=v . f$ along γ vanishing at $p \& q$

$$
\gamma \text { Think } v=\left.\frac{\partial x_{s}}{\partial s}(t)\right|_{s=0}
$$ Every v comes from $\gamma_{s} \leftarrow$

Rum. We do not moke Ω into an inf dim manifold... This is just on interpretation.

The Hessian

$$
\gamma_{s}(t)=\exp _{r(t)}(s v)
$$

$\frac{\text { In finte dim's }}{v, w \in T_{x} P}, \quad f: P \rightarrow \mathbb{R}$

$$
\text { ct. } u(0,0)=x
$$

$$
\begin{equation*}
P \text { Pr } u\left(s, s^{\prime}\right) \quad \text { P-: Tonlar exp. } \tag{177}
\end{equation*}
$$

$$
\begin{aligned}
& \left.\frac{\partial u}{\partial s}\right|_{\substack{s=0 \\
s^{\prime}=0}}=v,\left.\quad \frac{\partial u}{\partial s^{\prime}}\right|_{\substack{s=0 \\
s^{\prime}=0}}=w \\
& \begin{array}{l}
s=0 \\
s^{\prime}=0
\end{array} \quad s^{\prime}=0 \text { Iud of } \\
& \left.d_{x}^{2} f(v, w)=\frac{\partial^{2} f}{\partial s \partial s^{\prime}} f\left(u\left(s, s^{\prime}\right)\right) \right\rvert\, \begin{array}{l}
u \text { but } \\
\text { july } \sigma, w \\
s=0 \\
s^{\prime}=0
\end{array}
\end{aligned}
$$

Likewite in inf dimensours
$v, w \in T_{r} \Omega$ v.f. along

Take $u\left(s, s^{\prime}, t\right)$ s.t.

$$
\begin{aligned}
& u(0,0, t)=\gamma(t) \\
& \left.\frac{\partial u}{\partial s}\right|_{\substack{s=0 \\
s=0}}=v(t) \\
& \left.\frac{\partial u}{\rho_{s}}\right|_{\substack{s=0 \\
s=0}}=w(t)
\end{aligned}
$$

E.g. $\quad u\left(s, s^{\prime}, t\right)=\exp _{r(t)}\left(s v_{t s^{\prime}} w\right)$
set

$$
d_{\gamma}^{2} E(v, w):=\left.\frac{\partial^{2} E\left(u\left(s, s^{\prime}, \cdot\right)\right)}{\partial s \partial s^{\prime}}\right|_{\substack{s=0 \\ s^{\prime}=0}}
$$

Ind of the voriation and is couplutely det by $v_{\text {f }}$ w. wher $\gamma^{\prime} \in \operatorname{Crit}(E)$, squumetrie

- Ken $d_{\sigma}^{2} E=\left\{v \mid d_{j}^{2} E(v, w)=0 \quad \forall w\right\}$

$$
\gamma \in \operatorname{Crit}(E) \text { is nou-des : ker }=0
$$

- $\operatorname{index}(X)=\max \operatorname{dim} V$

Pover all V s.t.

$$
\begin{equation*}
\left.d_{\gamma}^{2} E\right|_{v} \leqslant 0 \tag{178}
\end{equation*}
$$

Tim (see milnoris book)
) p,q not conjugate
$\Rightarrow E$ is Manse, i.l. all $\gamma \in$ hit (E) are nou-deg. Assume so
2) $\operatorname{index}(\gamma)=\#\{x$ conj to p on $\gamma\}$ counted with null.

Ex

$$
\text { index }=n-1
$$

$$
\text { p to } q \text { to }-p \text { to } p \text { to } q
$$

Con index $<\infty$!

$$
\begin{aligned}
& \gamma_{0} \text { index }=0 \text { (min) } \\
& \gamma_{1} \quad \text { i. } d e x=n-1 \\
& \text { index }=2(n-1) \\
& \text {.... } \\
& \text { conj to } p: x_{1}=-p \\
& x_{2}=p
\end{aligned}
$$

Rok closed glodesoes

- All the def expend word-far-word
- Assume M is given a bumpy metre
- Part 1 of Thu is vacuous
- Part 2 is almost but not quite true
- One has to be careful:

Ken $\neq 0$ but $\operatorname{dim} \operatorname{Ker}=1$.

Rub Con equip Ω with the str of a Hilbert manifold by considering H^{\prime}-paths

- Finite-dim approximotion
- $P_{k} \subset \underbrace{M x \ldots x M}_{k}$ the space of all
$P_{1}=p$
with $\left.\sum \rho\left(p_{i}\right) P_{i+1}\right)^{2}<\varepsilon^{2}$
$P_{b}=$ Eounceting $p \& q$ Finitedim monibid sificently
- Fix a live partition

$$
0=t_{1}<t_{2}<\ldots<t_{k}=1
$$

of $\$$

- $\vec{p} \in P_{k} \leadsto a$ a brolen geodeste ξ with $\xi\left(t_{i}\right)=p_{i}$
perametrisel progortionally to the ave-linath
on $\left[t_{i-1}, t_{i}\right]$

$$
\Rightarrow \quad P_{k} \subset \Omega
$$

- $\left.E\right|_{P_{k}}=\sum \frac{e\left(P_{i-1} P_{i}\right)^{2}}{t_{i}-t_{i-1}}$
- Set $\Omega_{v}^{c}=\{\gamma \in \Omega \mid E(\gamma) \leqslant c\}$

$$
P_{k}^{c}=\left\{\xi \in P_{k} \mid E(\xi) \leqslant c\right\}
$$

Rmk $E(\gamma) \leqslant c \Rightarrow l(\gamma) \leqslant c^{1 / 2}$

$$
\text { Pf } \begin{aligned}
\int_{0}^{l}\left\|\dot{\gamma}^{\prime}\right\| d t & =\int_{0}^{1}\|\dot{\gamma}\| \cdot 1 d t \\
& \leqslant\left[\int_{0}^{1}\|\dot{\gamma}\|^{2} d t\right]^{1 / 2} \cdot\left[\int_{0}^{1} 1^{2} \cdot d t\right]^{1 / 2} \\
& =E(\gamma)^{1 / 2}
\end{aligned}
$$

So $x \in \Omega^{c}$ heve bounded leugth
Key pt: P_{k}^{c} is a vevy good approximotion of Ω^{c}

Prop (miluoz's book)

- Fix $c=$ reg. value of E.
- Asumme that $\left\{t_{i}\right\}$ is sufficiently fine, ε is sufficiently small and k is large (Depending on C)
\Rightarrow i) $P_{k}^{c} \longrightarrow \Omega^{c}$ is homotry eq In fact P^{c} is a deformation what of Ω^{C}

2) $\operatorname{Crit}\left(\left.E\right|_{\Omega^{c}}\right)=\operatorname{Crit}\left(\left.E\right|_{P_{k}^{c}}\right)$ $=$ true geodesics from p to q with $l(x) \leq \sqrt{e}$
3) \forall sech γ

- Ken $d_{\gamma}^{2} E=\left.\operatorname{Ken} d_{\gamma}^{2} E\right|_{p_{k}^{c}}$
- ind $d_{\gamma}^{2} E=$ ind $\left.d_{\gamma}^{2} E\right|_{p c}$

On the pe

1) We hove proved an analogue of 1) fan closed geodesics $E\left(\gamma^{\prime}\right) \leqslant C$ replaces conpectuers.
2) Similar to closed geodesics

A broken geodesre con be shortened of it has corners
3) Need to work ant an explicit formula fa $d_{\gamma}^{2} E$ (milnor)

Prop with a bit estiva work (1) + Mouse theory

Tho Assume peq are not conj
$\Rightarrow \Omega$ has homotopy type of an (infinite) ©W-complex with one macell for beck geodesic from p to q of in lex m.

Rub Could have worked with

$$
\varepsilon=\sum \rho\left(p_{i}, p_{i+1}\right)^{2}
$$

but the calurlation of $d_{\gamma}^{2} E$ is simpler fan E.
(We did not need it in LS theory)

Applicotion to topulogy

- Homology of Ω

Top digrevion
Fix p. How does $\Omega(p, q)$ depered on q?
It does nott, up to homotogy

$$
\begin{aligned}
& P=\{[0,1] \xrightarrow{\gamma} M \mid \gamma(0)=p\} \\
& \downarrow e v: \gamma \rightarrow \gamma(0) \leftarrow a \text { Sevve } \\
& M
\end{aligned}
$$

$$
\Rightarrow \Omega(p, q)=e^{-1}(q)<\text { all have the }
$$

same homotory type
\Rightarrow Can teke $q=p: \Omega(p, q)=\Omega_{p}=\Omega$ the basel laop spece
(This uot $\Lambda=$ the spece of free leops and $\underbrace{\text { Crit }\left(\left.E\right|_{\Omega}\right)}_{\text {qeoderir }} \neq \underbrace{\operatorname{Crit}\left(\left.E\right|_{\Lambda}\right)}_{\text {Closedgeodsios }}$

Rmb P is coutroctible

Eveny peth. cantrocts a low itself to P

Long exactegs vence

$$
\begin{aligned}
& \rightarrow \pi_{i}(\Omega) \rightarrow \pi_{i}\left(\mathcal{P}^{0}\right) \rightarrow \pi_{i}(M) \xrightarrow{\cong} \pi_{i-1}(\Omega) \longrightarrow \pi_{i}(P) \\
& \quad i>1 \quad \pi_{i}(M) \cong \pi_{i-1}(\Omega)-\text { used befove }
\end{aligned}
$$

Underatondiy $H^{*}(\Omega)$ and $H_{*}(\Omega)$ is imporbect in alg. topulogy.
Appliction Ω for $M=\delta^{h}$

Recall:
one geoderic Y_{k} of in des $k(n-1), k=0,1, \ldots$
$\Rightarrow \Omega$ has homotory bype of a couplex with exectly one cell of

$$
\operatorname{dim}=k(n-1), \quad k=0,1, \ldots
$$

$$
\text { Eon } H_{i}(\Omega)=\left\{\begin{array}{l}
\mathbb{E} \quad i=k(n-1) \\
0 \quad \text { otherwise } \\
n>2
\end{array}\right.
$$

Rms. The some is true when $n=2$, i.e. for $\2 but the argument is more involved. Need to show Hut $\partial=0$?

