Part III: Geodesics and all tho

Toward oo-dim applications
522 Preliminaries

Lecture 13 02/16

Review of relevant notions from Differential Geometry - minimalist
$M^{n}=$ closed manifold with a fixed
Riemannien metric
"Def 1" A geodesic \quad ': $[q, 6] \rightarrow M$
is a curve locally minimizing length:
if $t_{0} \& t_{1}$ are close to each other

$$
l\left(x \mid\left[t_{0}, t_{1}\right]\right)=\rho\left(x\left(-t_{0}\right), x(t,)\right)
$$

Here

$$
\begin{array}{r}
l(x)=\int_{a}^{b} n \dot{\gamma}(t) \| d t \\
\rho(p, q)=\inf l(\eta) \\
\eta \\
\text { connects } p \& q
\end{array}
$$

Rok $-\frac{l(x) \text { is independent }}{\text { of porametrizotion }}$ or orientation

- P is a metre 8 Misc coundete

A geodesir $p \leadsto r$ need not minimige dist stween p \& q.

Rmk oP coupret (conplete as a R,M.)
\Rightarrow any $p \& q$ can be connected by a geodesir (Hopf-Rinow Thm)
Ex: \exists a minizicy geodesie use Arzela_Ascoli, also will be
clean later
In whet follows we will be inferested in two types of qeodevers: conneuting two fixed pis $p \& q$ and clooed geoderves

$$
\gamma: \delta^{\prime} \xrightarrow{c^{\infty}} M
$$

$$
s^{4}=\mathbb{R} / \mathbb{Z}=[0,1] / 0
$$

$$
\dot{\gamma}(0)=\dot{\gamma}(1)
$$

$$
\begin{aligned}
& \frac{\text { Set }}{\Lambda=\Lambda(p, q)} \\
& \begin{aligned}
\Lambda & =\{\gamma:[0,1] \nsubseteq M) \gamma(0)=j \quad \gamma(1)=q\} \\
\Lambda & =\left\{\gamma: s^{\prime} \rightarrow M\right\}
\end{aligned}
\end{aligned}
$$

Defe A geodesir is a "critical pt" of

$$
l: \Lambda \rightarrow \mathbb{R}
$$

bet geodesies comnedt's $p \& q$, ete

Rmk Not quite seliofectory:

- L is not smooth: 114 not smooth $x \mapsto y=|x|$ not smost
But smooth at immessious:

$$
\dot{\gamma}(t) \neq 0 \quad \forall t
$$

- l is independert of paramptrizetion
\Rightarrow huge sets of critical pob
aloug witt x coutein Joy
[0,1]
Def 3 A geodesie is a crictical pt of the energy furchioual:

$$
\left.\begin{array}{l}
\text { Deprucls } \\
\text { on } \\
\text { paramutrizolion }
\end{array} E: \Lambda \longrightarrow \gamma^{2}\right)=-\int_{0}^{1} u \dot{\gamma}(t) \|^{2} d t
$$

An issue to deol with: wht ir a arit pt
Recal $f: P \rightarrow R \quad x$ is a cont. ot if

$$
d f_{x}=0 \Leftrightarrow \underbrace{\left(2_{v} f\right)(x)}_{d f_{x}(\sigma)}=0 \quad \forall v
$$

xes)

$$
\begin{aligned}
& f^{7} x \\
& x(0)=x \\
& \frac{d}{d s} x(0)=v
\end{aligned}
$$

$$
\Leftrightarrow \underbrace{\left.\frac{d}{d s} f(x(s))\right|_{s=0}}=0 \forall \eta
$$

$$
=:\left(L_{v} f\right)(x)
$$

Def $x \in \operatorname{Crit}(E)$ if \forall any vorichion γ_{s} of γ we hove $\gamma_{0}=\gamma$

$$
\left.\frac{d}{d s} E\left(\gamma_{s}\right)\right|_{S=0}=0
$$

should think

$$
\begin{aligned}
& T_{\gamma} \wedge=v . \int \text { along } x \text { in } \\
& \quad\left(\text { vonishivy of } p \delta_{g}\right)^{\frac{\pi}{p}} \\
& v=\frac{d}{d s} \gamma(s) \\
& \left(L_{v} E\right)(\gamma)=d E_{b}(v):=\left.\frac{d}{d s} E(\gamma(s))\right|_{s=0}
\end{aligned}
$$

Fact: - geoderies in the sense of Def 3 also satisfy Defis 1 2 2 : locally length mininiziy and critical pis of L (u unless $\gamma \equiv p t$)

- and $\dot{x}(t) \neq 0$ for by t unless $\quad \gamma \equiv p t$

Fact: As a eritical pt γ comes with a notuval povemetrizetion:
(E pics up a poometizghon) γ is poromefriged profortiowally to are length to get from p to q or closeup in time 1.

Are leugth paranctrizotion:

$$
l\left(\left.\eta\right|_{[0, t]}\right)=t \quad \Rightarrow\|i \eta\|=1
$$

Lihewise for clused geodesics

$$
l=\rho(p, q)=L(y)
$$

η paramchized by arc lougth: $[0, l]$

$$
\gamma(t)=\eta(l \cdot t)
$$

$$
\Rightarrow\|\dot{\gamma}(t)\|=l
$$

$$
\Rightarrow E(\gamma)=\int_{0}^{1}\|\dot{\gamma}(t)\|^{2} d t=l^{2}
$$

For any x parametrized by $\left[\begin{array}{ll}0 & 1\end{array}\right]$ ~ avclength

Foct: $\cdot \exists \varepsilon>0$ s.t. $\forall p, q \in M$
Cinjectivity|with $\rho(p, q)<\varepsilon$
radius) \exists unique minimal geodesir $\gamma_{p, q}$ counecting to $q: l\left(\gamma_{p, q}\right)=p(p, q)$

- Moveover, Xp.q depecis smoothly on $(p, q) \in M \times M$

Rnk. r is a geodeste (in the sense 84 Def 3)

$$
\Leftrightarrow \nabla_{\dot{\gamma}} \dot{\gamma}=0<\text { auelevotion }
$$

This is how geodesies ave usually detined in R.G.

Rank In the next two sections we follow Bott's "Lectures on M.T."
§23 Closed Geodesics, I:Cartan is Tim
M^{n} closed Riemannian manifold
Recall: free homotopy classes $S^{\prime} \xrightarrow{C^{\infty}} M$

$$
\begin{aligned}
& =\left[S^{\prime}, M\right] \\
& =\text { conjugrey classes in } \pi_{1}(M)
\end{aligned}
$$

$\Rightarrow \pi_{l}(m) \neq 1 \Leftrightarrow$ Inon-coutroclible loops
Tho (Carton) $\quad \pi_{1}(M) \neq 1$
for any non-trivial free homotopy class $[\alpha] \in[S, M] \exists$ a closed geodesic in the clan $[\alpha]$.

Idea: toke the shortest loop in α as this geodesic or minimize E over all loops in a

Minor adjustment to the setting:

$$
\Lambda=\text { continuous piece-wite smooth }
$$ loops

Note: E, lett an still
 defined...

Recall: $\left[, S^{\prime \prime} 1\right] \longleftrightarrow \pi_{0}(\Lambda)=\begin{gathered}\text { connected } \\ \text { componewhs }\end{gathered}$

$$
\text { in } \lambda
$$

$$
\Lambda_{\alpha}=\text { the connected conponent } \Rightarrow[\alpha] \neq 1
$$

Pf

- DI Geodesir polygous = brohen geodesies shast geodeste segmats ε <inj.rad

$$
P_{k-1} \cdots \quad \rho\left(P_{i}, P_{i+1}\right) \leqslant \varepsilon
$$

$$
\left(P_{k}=P_{0}\right)
$$

\vec{p} giver rise to a well-defined element in Λ "broben geodesr ${ }^{4}$ (terminology)

- Every loopacon be a pproximobed by broken geodesir (with large k) in the some free homotopy elass.
\rightarrow Portition $[0,1]=\$ 1$ into

$$
\begin{array}{ccc}
0=t_{0}<t_{1}<\ldots & <t_{k-1}<t_{k}=1=0 \\
\alpha\left(u_{0}\right) & \alpha\left(t_{1}\right) & \alpha\left(t_{k-1}\right) \\
4\left(t_{k}\right) \\
p_{0} & p_{1} & p_{k-1} \\
11 & p_{0}=p_{k}
\end{array}
$$

so thet $\rho\left(P_{i}, \alpha(t)\right)<\varepsilon \quad \forall t \in\left[t_{i}, t_{i+1}\right]$

$$
\begin{equation*}
P_{i}=\alpha\left(t_{i}\right) \tag{146}
\end{equation*}
$$

\Rightarrow broken geodergie $\vec{p}=\left(p_{0}, \ldots, p_{k-1}\right)=\xi$ c^{0}-approximoling α
Homotopy from α to Σ : s ave lenesth

Con: Every Λ_{α} coutains a broken geodesie

Next: $\quad P_{k} \subset \underbrace{M x \ldots x M}_{k}$ s.t.

$$
\varepsilon(\vec{p})=p\left(p_{0}, p_{1}\right)^{2}+\ldots+p\left(p_{k-1}, p_{0}\right)^{2} \leqslant \varepsilon^{2}
$$

Important:
(i) $\vec{p} \in P_{k} \quad \Rightarrow \quad \rho\left(P_{i}, P_{i+1}\right) \leqslant \varepsilon$

$$
\begin{aligned}
& \Rightarrow \text { get a broken geodesic } \xi \forall \vec{p} \in P_{k} \\
& \Rightarrow P_{k} \subset \Lambda
\end{aligned}
$$

(2) ξ is not necessarily short:
any α con be approximoled by an element in $P_{k} \leftarrow$ lase
Pf. Approximated α for some k \& δ (in place of ε)

$$
\rho\left(P_{i}, P_{i=1}\right)<\delta
$$

and start subdividing

$$
\begin{aligned}
& \rho\left(p_{i}, p_{i+1}\right)=d<\delta \\
& \rho\left(p_{i}, q\right)=\rho\left(q_{j}, p_{i+1}\right)=\frac{d}{2}
\end{aligned}
$$

$\rho\left(p_{i,} p_{i+1}\right)^{2}=d^{2}$ get t replaced by

$$
e\left(P_{l}, q\right)^{2}+p\left(q, P_{i+1}\right)^{2}=\left(\frac{d}{2}\right)^{2}+\left(\frac{d}{2}\right)^{2}=\frac{d^{2}}{2}
$$

Con mole the total sum $\sum \rho\left(p_{i}, p_{i-1}\right)^{2}$ corbituovily small

Lecture 14

$$
02128
$$

Instructive: U(otion between $\varepsilon(\vec{p}) \& E(\xi)$

$$
\varepsilon(\vec{p})=\sum \rho\left(p_{i} p_{i-1}\right)^{2}
$$

- deperses on pertition and poromotrizohion
- cen be reolly small
E.g. $\quad l(\xi)=l, \quad p\left(p_{i}, p_{i+1}\right)=\frac{l}{k}$

$$
\Rightarrow \varepsilon(\vec{p})=k \cdot\left(\frac{l}{k}\right)^{2}=\frac{1}{k} l(\xi)^{2}=\frac{1}{k} E(\xi)
$$

overall depects on whre P_{i} 's ove:

$$
E(\xi)=\sum_{i=0}^{k-1} \frac{\rho\left(p_{i}, p_{i+1}\right)^{2}}{t_{i+1}-t_{i}}-<\text { Uore generetly }
$$

Cwhon proundrized by [0, 1$]$, wavelength on each $\left[t_{i-1}, t_{i}\right]$

Rmk - P_{k} approximates \{E<a\} in 1 very well (homotopy eq) whon K is lange
Upshot $P_{k \alpha}=\lambda_{\alpha} n P_{k} \neq \varnothing \quad(k$ large $)$
smooth mouitald with boundery: $\varepsilon=\varepsilon<$ genevic

$$
\begin{aligned}
& \Rightarrow P_{k, \alpha}= \text { union of some } \\
& \text { counerted couponerts } \\
& \text { of } P_{k}
\end{aligned}
$$

Idea: Preplace E by ε on P_{k}

$$
\text { - soon see } \underbrace{\operatorname{Crit}(\varepsilon)}_{\text {clorel geodesies }}
$$

But not crucial.

Then: minuinize E on $P_{k, \alpha}$
$\underline{R_{n k}} \cdot \varepsilon \int_{\partial P_{k}}=\left.\max \varepsilon\right|_{P_{k}}=\varepsilon^{2}$

- $\varepsilon \geqslant 0$
- min $\left.\varepsilon\right|_{P_{r, \alpha \neq 1}}>0 \leftarrow$ dowit wed

Lemma $\quad \gamma \in \operatorname{Crit}(\varepsilon) \Rightarrow \gamma$ is a closed $\stackrel{\text { Idea: }}{\text { changes }}$
pf of the lemma $\&(\vec{p})$

Step 1
(p, q) neon diagond in $M \times M$:

$$
e(p, q) \leqslant \varepsilon<\text { ing. rodius }
$$

How does $p(p, q)$ changes when we move p \& q ?

$$
x^{ \pm}=\text {unit tangents }
$$

$$
p^{2}=\rho(p, q)
$$

$$
T_{(p, q)} M \times M=\underset{\sim}{T_{p}} M \times{\underset{q}{q}}^{Y_{q}}{\underset{q}{q}}^{v}
$$

$$
\begin{equation*}
L_{\left(Y_{p}, Y_{q}\right)} \rho^{2}=2\left(\left\langle X^{t}, Y_{q}\right\rangle-\left\langle X^{-}, Y_{p}\right\rangle\right) \cdot \rho \tag{x}
\end{equation*}
$$

Put the pf of (*) aside for now and finish the pf of the levine

Step 2

At every P_{i} we hove $X_{i}{ }^{7}$ \& X_{i-1}^{-} and Y_{i}

Summing up ($*$) for each segment we git

$$
\begin{aligned}
& L_{\left(Y_{0}, \ldots Y_{k-1}\right)} \in(\vec{p}) \\
= & 2 \sum_{i=0}^{K-1}\left(\left\langle Y_{i+1)} X_{i+1}^{+}\right\rangle-\left\langle Y_{i}, X_{i}^{-}\right\rangle\right) \rho_{i} \\
= & 2 \sum_{i=1}^{k}\left\langle Y_{i}, X_{i}^{+} \rho_{i}-X_{i-1}^{-} \rho_{i-1}\right\rangle \\
\Rightarrow & \vec{p} \in C_{r i}+(\varepsilon) \Leftrightarrow X_{i}^{+} \rho_{i}=X_{i}^{-} \rho_{i-1} \quad \forall i
\end{aligned}
$$

\Leftrightarrow no corner at at pi

and porometrizetien of the edges we tale.

Remains to prove (*)

Pf of (*) in \mathbb{R}^{k} Similar is general but need a bit
 unsure D.G.
see milnow's book p. 71 .

Con annume one of the vectors Y_{p} or $F_{q}=0$ (by additivity). Say $Y_{p}=0$

$$
\begin{array}{rl}
p=0 \Rightarrow & \xi(t)=q t \\
& x^{+}=x^{-}=q / k q \| \\
q_{s}=q & s x_{q}
\end{array}
$$

$p=0$

$$
p^{2}(s)=\left\|q_{s}\right\|^{2}=\left\|q+s Y_{q}\right\|^{2}
$$

$$
\left.\frac{d}{d s} p^{2}(s)\right|_{s=0}=\frac{d}{d s} U q+s Y_{q} \|\left.^{2}\right|_{s=0}
$$

$$
=2\left\langle q Y_{q}\right\rangle=2\left\langle{\underset{X^{+}}{n q u}}_{\frac{q}{n}}, Y_{q}\right\rangle{\underset{p}{p}}_{\|_{q} u}
$$

$$
=2\left\langle x^{+}, Y_{q}\right\rangle \cdot p
$$

Rok whet happens if $[\alpha]=1$
The argument goes through but gives a point geodesic

Rush some argument shows the exortence of a miviniizing geodesic between any two points.

Rune Could have worked with E on Pro, just need to be a bit more careful near ∂P_{k}
$\$ 24$ closed Geodesics, II:
2usternik -Flt Tm

But what of $\pi_{i}(M)=1$?

Tho (Lusternik - Fit)
$\bar{\pi}(M)=1 \Rightarrow \exists$ a son-conz closed geodesic
The argument builds on the machinery we developed in the prev. section
Note: Now 1 is connected
pf

1) First need a bit on top of 1 . Evaluation map

$$
\begin{aligned}
& \left.e: \begin{array}{rl}
\Lambda & \rightarrow M \\
\gamma \rightarrow X(0)
\end{array}\right\} \xrightarrow{\text { Sure fibrotion }} \\
& \Omega \xrightarrow{\dot{j}} \lambda \\
& \Omega=e^{-1}(p) \\
& =\text { loops troy } p \\
& =\{x \mid \gamma(0)=p\}
\end{aligned}
$$

a section $p \longmapsto$ constant lop $\gamma(t) \equiv p$

$$
e s=i d \quad: \quad M \rightarrow \Lambda
$$

Fibrokien \Rightarrow long exact seq in komotoyg gis

$$
\begin{aligned}
& \bar{\pi}_{i+1}(\Omega) \xrightarrow{\partial} \pi_{i}(\Omega) \xrightarrow{j_{*}} \pi_{i}(\Lambda) \xrightarrow[s_{*}]{\stackrel{e_{*}}{\longrightarrow} \pi_{i}(M) \xrightarrow{0} \pi_{i-1}(\Omega) \xrightarrow{j_{*}}} \\
& e s=i d \Rightarrow \quad e_{*} s_{*}=i d \\
& \Rightarrow \pi_{i}(\Lambda)=\pi_{i}(\Omega) \oplus \pi_{i}(M) \\
& A l \text { so } \quad \pi_{i}(\Omega)=\pi_{i+1}(M)
\end{aligned}
$$

$$
i \geqslant 1
$$

$$
\Rightarrow \pi_{i}(\Lambda)=\pi_{i+1}(M) \oplus \pi_{i}(M)
$$

$\Rightarrow \pi_{i}(\lambda) \neq 0$ for some $i \geqslant 1$
Toke min i so flect $H_{i}\left(M_{j} \mathbb{Z}\right) \neq 0$

$$
\pi_{i}(1 M) \neq 0
$$

Moveover $\exists i \geqslant 1$ such olub

$$
\bar{u}_{i}(n) \neq 0 \& \bar{u}_{i}(M)=0
$$

2) Need state exactly how P_{k} approximates A :
Lemma For any $i_{0} \exists k_{0}$ such that

$$
\begin{array}{r}
\pi_{i}\left(P_{k}\right)=\pi_{i}(\Lambda) \text { for } \quad i \leqslant i_{0} \\
k \geq k_{0}
\end{array}
$$

pl
Here we have $P_{k} \longrightarrow \Lambda$

- The pt $A(3), 3 \in S^{i}$ is a loop, Need to contra it continuously (in I) to a loop in Pu

We hove constructed such a coutruchor for on individual x Depending only on a sufficiently five partition

$$
t_{j}=\frac{j}{k}
$$

The value k is determine by

$$
\begin{equation*}
\max _{t \in \delta}\|\dot{\gamma}(t)\|=\|\dot{\gamma}\|_{c^{0}} \tag{157}
\end{equation*}
$$

Now it suffices to dele the same k for all $A(3)$:

$$
\operatorname{mox}_{s \in \$_{i} i}\left\|\frac{d}{d t} A(J)\right\|_{c} \cdot \leadsto k
$$

Rub. In this construction ane the original one, we did not specify how to parametrize ξ.

- Con parametrize ~auclength

$$
\Lambda \underset{\sim}{\underset{\sim}{~}}\{\operatorname{loogs} \text { parametrized } \sim \text { ave length }\}
$$

- Deform γ to ξ with whatever parametrization, reporamatrize

3) Punchline

- Toke $i \geq 1$ so quit $D_{i}(1) \neq 0$ and

$$
\left.\bar{u}_{i}(M)=0 \quad B_{y}\left(x_{1}\right) \text { in }\right)
$$

Take k so longe twat

$$
\left.\pi_{:}\left(P_{k}\right) \neq 0<\text { exirts by } 2\right)
$$

- $F=\left\{A: \xi^{i} \rightarrow P_{k} \hookrightarrow \wedge\right\}, \quad[A]=\alpha \neq 0 \operatorname{in} \bar{U}_{i}\left(P_{k}\right)$ Closed under the positive arti-grad tow for ε an P_{n}

$$
\varepsilon \overbrace{\left.\frac{\cdots}{q}\right]^{q}} \quad \varepsilon=\varepsilon \quad \varepsilon>0
$$

$$
\stackrel{g n}{<} p_{n}
$$

P_{n} has bounder but it does not meter:

$$
\varepsilon h P_{n}=\operatorname{mox}
$$

- Apply the Minimax Principle for F Get a critical value a trained on some γ :

$$
c=\varepsilon(x)=\left.\inf _{A \in f} \max \varepsilon\right|_{A} \geqslant 0
$$

- Need to know Hut $c>0$

$$
\Rightarrow \text { i is nou-trivial. }
$$

But if not, A gets coulrocted into $\underset{1}{\text { cont }} \rightarrow M_{1007 s} \rightarrow P_{n} \subset \lambda$ by the onti-gral flow

$$
\varepsilon=0 \quad \Rightarrow A \text { is reppresated in } M
$$

$$
\begin{aligned}
& 1 \text { or } P_{n} \operatorname{But}[A] \neq 0 \text { in } \pi_{i}\left(P_{n}\right) \\
& \text { and } \bar{n}_{i}(M)=0 \\
& M=\min \text { of } \varepsilon \quad \longrightarrow
\end{aligned}
$$

