\$19 Connectivy with LS Theovy Lecture 11

- Critical value selectoss 02/09
Review miniug
This is the fisst applicotion of of the Min/mox Princeiple

Goal: reprove

$$
|\operatorname{crit}(f)| \geqslant \operatorname{cl}(P)+1
$$

Tolbe mose precics we ll prove

$$
\begin{aligned}
& \operatorname{Crit}(f) \text { isoletel } \\
& \quad \Rightarrow \operatorname{cv}(f) \geqslant c \mid(P)+1
\end{aligned}
$$

- As befone

By a much moze

$$
\delta: \underset{\imath_{\text {closed }}}{c^{\infty}} \mathbb{R}
$$

- Fix $F<\psi$ background ring (or field)

$$
H_{*}(P)=H^{n-*}(P) \text { when a fiold }
$$

Crikical value selectors

- $\alpha \in H_{k}(P)=H^{n-k}(P)$
- Stick to some coustruction of $H_{*}(\mathbb{P})$ as the homology of $C_{*}(P)$

$$
F_{\alpha}=\{A \mid[A]=\alpha\}
$$

Rmk. A is not neceusovialy a subset of P but retler a coubiection of nops to $P(A: M \rightarrow P$ or siupl. (hain) and then we mean the imaje of this nop

- Or it ca be liberally a cubset: - pseudo-sycles [mcDuH-Selamon]

Det-1 Criticalal value selevtors

$$
\begin{aligned}
c_{\alpha}(f):=c_{q_{\alpha}}(f): & =\min / \max \text { fon } \bar{q}_{\alpha}=\{A \mid[A]=\alpha\} \\
c_{\alpha}(f) & =\inf \max f \\
& {[A]=\alpha \quad A }
\end{aligned}
$$

Ex. $\quad P=\pi^{2}$

$\alpha=$ homology clans of then lao μs $c_{2}(f)$ is attained by pushing down A by $\varphi t \geqslant 0$
φ^{t} fill it "hakes on" a critical pt

Def 2. Assume f is Movie

$$
\begin{aligned}
& A=\sum m_{i} x_{i},[A]=\alpha \text { if } C M_{\alpha}(f) \\
& C_{\alpha}(f)=\frac{i n f}{A} \max _{m_{i} \neq 0} f\left(x_{i}\right)
\end{aligned}
$$

- If f is not Morse, approximate it by morse $\tilde{f} \xrightarrow{\infty} f$ and set

$$
c_{\alpha}(f)=\lim _{\tilde{f} \rightarrow f} c_{\alpha}(\tilde{f})
$$

Examples $\cdot C_{\text {[MD }}(f)=\max f$

- $c_{[p t]}(f)=\min f$

Def. 3

$$
c_{\alpha}(f)=\inf \left\{\underset{\sim}{a}|\underset{\operatorname{regula}}{ }| \underset{\operatorname{im}}{ }\left(H_{*}\left(P_{a}\right) \rightarrow H_{*}(P)\right)\right\}
$$

Pf of equiv: $\operatorname{Def} 2 \Leftrightarrow \operatorname{Def} 3 \Leftrightarrow \operatorname{Def} 1$
$\frac{\text { Propakies }}{\min / \operatorname{mox}}$ by def.

- Criticality: $C_{\alpha}(f)=c^{2}$ t value of f
- Monotonicity: $f \leqslant g \Rightarrow C_{2}(f) \leqslant c_{2}(g)$ By dit
- $\frac{c^{0} \text { continuity: }}{\uparrow} \quad \underbrace{\left|c_{\alpha}(f)-c_{\alpha}(g)\right| \leqslant|f-g| l}_{\text {Hint: }} \| c^{0}$

Hint:
use $f-\varepsilon \leqslant g \leqslant f+\varepsilon$
and monotonicity
Rok $\quad C_{\alpha}(f)=f(x)$
$\operatorname{Crit}(f)$

cannot wake x cont in f

- Sub-additivity $\quad \alpha, \beta \in H_{*}(P)$
(a) $c_{\alpha \cap \beta}(f+g) \leqslant c_{\alpha}(f)+c_{\beta}(g)$

In portimlan $\forall 太$ Take $g=0$
(2) $C_{\alpha \sim \beta}(f) \leqslant C_{\alpha}(f)$

Informal explonefion: for (i)

$$
\begin{gathered}
\alpha=[A], \beta=[B], \quad \alpha \cap \beta=[A \cap B] \\
C_{\alpha r \beta}(f+g)=\left.\inf \quad \max (f+g)\right|_{C} \\
\quad[c]=\alpha r \beta
\end{gathered}
$$

to be

$$
C=A \cap B
$$

$$
\begin{aligned}
& \leqslant\left.\max (f+g)\right|_{A n B} \\
& \leqslant\left.\max f\right|_{A}+\text { wax }\left.g\right|_{B}
\end{aligned}
$$

Now take inf over all $A \& B$

- Can be turned into a pf once "cycles" and $A \cdot B$ are defined
(2) is even easier:

$$
\left.\max f\right|_{A \cap B} \leq\left.\max f\right|_{A}
$$

Pf of (1) using Y-graph flows
con assume that f \& g are Mouse

$$
=\sum a_{i} b_{j} x_{i} y_{j}
$$

Pick A \& B so tut

$$
c_{\alpha}(f)=\max f\left(x_{i}\right)
$$

$$
(f+g)\left(z_{k}\right) \leqslant f\left(x_{i}\right)+g\left(y_{j}\right)
$$

$$
c_{\beta}(g)=\operatorname{mox} f\left(y_{j}\right)
$$

our of these C
Then $c_{\alpha \circ \beta}(f+g)=\inf \max (f+q)$

$$
\begin{align*}
& \quad c=\sum c_{k} w_{k} \\
& \leqslant \max f\left(z_{k}\right) \\
& \leqslant \max f\left(x_{j}\right)+\max g\left(y_{j}\right)=c_{a}(f)+c_{\beta}(g) \tag{122}
\end{align*}
$$

$$
\begin{aligned}
& \alpha=H M_{*}(f)=H_{*}(\beta), \quad A \in C M_{*}(f) \\
& \beta \in H M_{v}(g)=M_{*}(p), \quad B \in C M_{*}(g) \\
& A=\sum a_{i} x_{i} \\
& B=\sum b_{i} y_{i} \\
& \text { Crit (f) } \\
& \alpha \cap \beta=[A \cdot B]
\end{aligned}
$$

Ex. Give a divect pf of (2) using the $H_{*}(P)$-modi-str an $M M_{*}(f)$

$$
\begin{aligned}
& H M_{*}(f) \otimes H l_{*}(P) \longrightarrow H M_{*}(f) \\
& \alpha=[A] \quad \beta=[B] \\
& A=\sum a_{i} x_{i} \\
& B \cdot A=\sum a_{i}\left(B \cdot x_{i}\right) \\
& =\sum a_{i} \#\{\hat{F}\} z_{j} \\
& \text { f decresivy along } u \Rightarrow \text { (2) } \\
& z_{j}
\end{aligned}
$$

Cor $\min f \leqslant c_{\alpha}(f) \leqslant \max f$

A more subtle result
$\frac{\text { Tho("LS inequality") }}{\text { Assume 0 Erit(f) isolated }}$

- $\mid \beta /<n: \beta \infty[P]$
$\Rightarrow \quad c_{\alpha \sim \beta}(f)<e_{\alpha}(f)$
strict
I dour know a very simple pf
Exploration:

(Not enembicel
$\Rightarrow c=\max _{\mathrm{f}}^{\mathrm{f}} \mathrm{f}_{A}$ and $\operatorname{mox} / / A$ is attained at one pt on $A \Leftarrow \operatorname{erit}(4)$ isuloted

$$
|\operatorname{deg} \beta|<n \Rightarrow \operatorname{codim} B \geqslant 1
$$

generically
$\Rightarrow B$ does'r not pan throng max of f / A

$$
\begin{equation*}
\Rightarrow \quad \max f / A \cap B<\max _{A / A} \tag{4}
\end{equation*}
$$

Not hard to turn into a a real pf

Now we are ready to ze-prove

$$
\left.\begin{aligned}
\begin{aligned}
\text { Prop } \\
(L S)
\end{aligned} & f: P \xrightarrow{P} \xrightarrow{c^{2}} \mathbb{R} \\
& \\
\Rightarrow & \mid \ln \cdot t(f) \text { isolcted }
\end{aligned} \right\rvert\,
$$

Pf. $k=c \mid(P)$, use intersertion produ A

$$
\underbrace{\beta_{1} \cap \ldots \cap \beta_{k} \neq 0}_{\substack{\text { necesoul }[p-1] \\ \text { by } P D}} \text { in } \quad H_{*}(P)
$$

$$
\Rightarrow \underbrace{[M]}_{\alpha_{0}}, \underbrace{[M] \cap \beta_{1}}_{\alpha_{1}=\alpha_{0} n \beta_{1}}, \underbrace{[M] n \beta_{1 n} \beta_{2}}_{\alpha_{2}: \alpha_{1 n} \beta_{2}}, \ldots, \underbrace{[m] n \beta_{1}, \ldots n \beta_{k}}_{\alpha_{k}=\alpha_{k-1} n \beta_{k}}
$$

Pnop

$$
\Rightarrow \underbrace{\underbrace{C_{\alpha_{0}}}_{\text {mosf }}(f)>C_{d_{1}}(f)>\ldots>\underbrace{C_{k}(f)}_{\text {minf }}}_{k+1}
$$

Refinement:
Q. what happens when we have an equality of two exit voGue selectors?

$$
\begin{aligned}
e_{\alpha n \beta}(f) & =c_{\alpha}(f) \\
& <-i \text { isolated } \mid \beta 1<n
\end{aligned}
$$

Let $K=$ exit set on the level

$$
\begin{gathered}
f=c, \quad c=\operatorname{ean} \beta(f)=e_{\alpha}(f) \\
\alpha, \beta \in H_{*}(P)
\end{gathered}
$$

Prop The restriction of $P D(\beta) \in M^{*}(P)$ $(E x)$ is $\neq 0$ in $H^{*}(K)$

Ex. $\quad \beta=[P] \Rightarrow P D(\beta)=1 \in H^{0}(P)$

$$
\begin{aligned}
& H^{0}(P) \underset{\text { onto }}{\longrightarrow} H^{0}(k) \\
& 1
\end{aligned}
$$

and $\alpha \sim \beta=\alpha$

$$
\operatorname{Canp}(f)=C_{\alpha}(f)
$$

Con $|\beta|<n \quad(\Leftrightarrow|D D(\beta)|>0)$

$$
\Rightarrow \operatorname{eard}(k)=\text { coutinuamn (cannot be }
$$

Con $|\operatorname{cv}(f)| \leqslant c \mid(P)$
\Rightarrow continuom of Crit pts

Rama Need to be careful about the def of $H^{*}(K)$, for K could be a very bal set.
§20 Anothen Applicetion: Lecture 12 $02 / 11$
the Courant-Fiseben Thm

Setting

- $Q(x)=\langle A x x\rangle: \mathbb{R}^{n+1} \rightarrow \mathbb{R}, \quad A^{\top}=A$ a quadratic form
- $f=Q / s_{s n}: S^{h} \longrightarrow \mathbb{R}$

Alsoknow as the Rayleigh-Ritz quotient:

$$
f(x)=\frac{\langle A x, x\rangle}{\langle x, x\rangle}: \mathbb{R}^{n \neq 1} 0 \longrightarrow \mathbb{R}
$$

Mere we think of f as $S^{2} \longrightarrow T R$

- $\quad \lambda_{0} \leqslant \ldots \leqslant \lambda_{n}$ the eigenvalues of $Q_{\text {or }}$)

Thon (Courant - Fischer)

$$
\lambda_{k}=\inf _{\left\{L_{k}\right\}}^{\max f / L_{k},}
$$

E.g.

$$
\lambda_{0}=\min f
$$

$$
\partial_{n}=\max 7
$$

wher $2_{z}=S^{n} n\{\underbrace{k+1} \operatorname{dim} \operatorname{lin}$ space $\} \cong s^{k}$

$$
{ }^{1} \operatorname{Gon}(n+1, k+1)
$$

Rmh A similar stetement for Mermitian forms on \mathbb{C}^{n+1} LSome

$$
\text { E.g. } k=1
$$

$$
A=A^{*}
$$

$$
\left\{L_{0}\right\} \cong \mathbb{R} P^{2}
$$

Pf.

- crit $(f) \longleftrightarrow$ unit eigenvectors

A $\operatorname{cv}(l) \leftrightarrow$ eigenvalues
Pf Lagrange multipliers
crit of Q on $\{g=c\}=\operatorname{sol}$ of $\nabla Q=\lambda \nabla g$

$$
\begin{array}{cc}
\nabla Q=2 A x \quad & \left(A^{\top}=A\right) \\
\nabla g=2 x \quad g=\|x\|^{2} \\
\nabla Q=\lambda \nabla g: \quad \underbrace{A x=\lambda x},\|x\|=1
\end{array}
$$

x is an eigenvalue
Then $\quad f(x)=Q(x)=\langle A x, x\rangle=\lambda$
Ruin unit eigenvectors $(=\operatorname{erit}(f))$ come in pains $\pm x$ with the same crit value λ

- $F=\left\{L_{k}\right\} \leftrightarrow \operatorname{Gr}(n+1, k+1)$
$\underbrace{\text { To closed under } \varphi^{t} \text { (repicires }}_{\text {HW check }}$ (requires a $p f$) ∇Q is liven or \mathbb{R}^{n+1}
$\rightarrow \nabla f=$ prop of $\left.\nabla Q\right|_{\delta_{n}}$ to $\delta^{\delta^{2}}$
\rightarrow Need to chert that φ^{t} sends equator to equerto is

$$
\min /\left.\max \Rightarrow \inf _{f}^{\max } f\right|_{L_{k}}=\mu_{k}
$$

ave critical values

- Routine: $\mu_{k} \leqslant \mu_{k+1}$ next page

Get $\mu_{0} \leq \ldots \leq \mu_{m}$

$$
\lambda_{0} \leq \ldots \leq \lambda_{h}
$$

$$
\begin{aligned}
& : \begin{array}{l}
n+1 \quad l \\
\text { Need to check } \\
\text { that every c.v. } \\
\text { isobtised in } \\
\text { this way }
\end{array}
\end{aligned}
$$

Hi's are among λj^{\prime} 's
$\Rightarrow \quad \mu_{i}=\lambda_{j}$

$$
\begin{aligned}
& \text { Lon a geverre } Q \\
& \text { than pau to a limit }
\end{aligned}
$$

$$
\Delta
$$

Rub. Roller than working on s^{2} could work on $\mathbb{R P P}^{k}: f(-x)=f(x)$
\rightarrow Then L_{k} projects to $\hat{L}_{k} \subset \operatorname{RR} P^{k}$
liver proj subspace $\cong \mathbb{R} p^{k}$

$$
\left[\hat{L}_{k}\right]=\left[\mathbb{R} P^{k}\right]=\alpha_{k} \in H_{k}\left(\mathbb{R} p^{k}\right.
$$

 all cycles in α_{k}

$$
\partial_{k}^{\prime}=\inf _{\hat{L}_{k} \in^{\in}{T_{k}}^{\prime}}^{\left.\max f\right|_{L_{k}} \geqslant\left.\inf _{A \in \mathscr{F}_{\alpha_{k}}} \operatorname{maxf}\right|_{A}=\lambda_{k} .}
$$

$$
\left.\begin{array}{l}
\lambda_{n_{0}^{\prime}}^{\prime} \leq \ldots \leq \lambda_{n}^{\prime} \\
\lambda_{0} \leq \ldots \leq \lambda_{n}
\end{array}\right\} \begin{gathered}
b_{0} \text { th }_{2} \text { seguever } \\
\text { formed by crit } \\
\text { values }
\end{gathered}
$$ (genaiolly distinct)

Fixing the gap: all eigenvalues occur.
By continuity, assume λ_{i} 's are distinct Assunve thee one of the eigenvalues does not occure

$$
\begin{aligned}
& \lambda_{i}<\lambda_{i+1} \\
& u \\
& \mu_{i}=\mu_{i+1}
\end{aligned}
$$

Two ways to reason:

1) A_{s} in refinement of $L S$:

Then $\operatorname{erit}(Q)$ are not isolated
2) By pasting to $\mathbb{R} p^{n}$

Then $\left\{Q<\lambda_{i+1}\right\}$ is contractible to $\mathbb{R P}^{i}$ and

$$
\begin{aligned}
& \left\{Q<\lambda_{i+1}\right\}>\mathbb{R} P^{i-1} \\
& \text { impossible } \longrightarrow<
\end{aligned}
$$

§21 History Diquesion:
Lusternik-Sehrivelmaun Thu
The origins of LS theory is
$\operatorname{Thm}(L S, 1929)$
Any metric on $\2 has $\geqslant 3$ sivple closed geodesics

- very difficuet
- Couplete detailed pf: Bollmann 1978

Idee of the pf \longleftrightarrow LS theony

- $\lambda=$ smooth embedded loojs in $\2

aqueat
cizole \nrightarrow great cizcles $\}<\Lambda$

$$
\operatorname{Gr}(3,2) \cong \mathbb{R P}^{2} \ll 2 \text {-dim lin. subspace }
$$

$\mathbb{R R}^{2}{ }^{\sim} n<$ Homotory equivech ca bso luvely war obios)

- $L: \lambda \rightarrow \mathbb{R}$ the length fauctional

By det $\operatorname{Crit}(L)=$ siuple closed geodesies

- Puuchlive: $\quad c \mid(\Lambda)=c l\left(\right.$ IRP $\left.^{2}\right)=2$

If we could do LS on Λ we wonld heve

$$
|\operatorname{erit}(L)| \geqslant \operatorname{cl}(\Lambda)+1=2+1=3
$$

One can do an avalogue of the LS theorg on A (thet was tho starting pt for them), bet this is very difticult.
§22 Getting rid of compactness:
the Polais-smole condition
Goal: Find a good replacement for the condition that P is compact Too restrictive.

Background assumption:
$P=$ finite dimensional (but possibly not e preferobles on compacts
Hilbert or Banach mouitd d
(never compact)
$-S: \mathbb{P} \rightarrow \mathbb{R}$ sufficiently smooth
Def f satisfies the Palais-Smole condition if (PS)

- every seq $\left\{x_{i}\right\} \subset P$ st.

$$
\left|f\left(x_{i}\right)\right|<c<\infty \quad \text { and } \quad \underset{(\leftrightarrow)}{d f\left(x_{i}\right) \longrightarrow 0}
$$

contains a convergent subseg
Rok $\quad d f\left(x_{i}\right) \longrightarrow 0 \Leftrightarrow \nabla f\left(x_{i}\right) \longrightarrow 0$
where \exists a Rem. $: \operatorname{dim} P<\infty$ on P Hilbert
but not when P is Bonack.

Rok Ps condition does not involve The flow of $-\nabla f$. One con have PS satisfied without the flow

Important: PS condition easily breaks down Donit seed anything exotic
construction: Start with $f: \frac{P}{\text { closed }} \rightarrow \mathbb{R}$

- $\dot{P}=P \backslash\{a$ crit pt $\}$
$\Rightarrow f: P B \rightarrow \mathbb{R}$ does not sationg the PS but everythis else is fine $\left(G_{t}\right.$ is defined for $a t$?

$\left|f\left(x_{i}\right)\right|$ bounded $\nabla f\left(x_{i}\right) \rightarrow 0$ but x_{i} does not conn $x_{i} \rightarrow x \& \dot{p}$

Upshot: Charge of topology from P_{0} to I_{D} Without PS \Rightarrow existence of critiod as

Basic exanple-applicetion-illustration
Assumptions:

- f bounded from below
- 1 sotioties PS
- The flow for anti-grad-line vector bield is defined for all $t \geq 0$
$\Rightarrow f$ has a critical pt actually min is attained

$$
\begin{gathered}
X \text { cit. } L_{x} f \leqslant 0 \\
L_{x} f(x)=0 \Leftrightarrow x \in \operatorname{Crit}(f) \\
E . g \quad X=-\nabla f
\end{gathered}
$$

For wary purposes an good an $-\nabla f$ but moue flexible \& does not need metric
Pf stent with some x and set

$$
z_{k}=\varphi^{k}\left(x_{0}\right) \quad k \rightarrow \infty
$$

PS + bounded from below

$$
\Rightarrow \quad z_{k} \rightarrow y<c^{-1} p t
$$

- To get min: tole x_{i} sit.
$f\left(x_{i}\right) \rightarrow \inf f$. Apply this process and get y_{i}

$$
\begin{aligned}
& d f\left(y_{i}\right)=0 \& \quad f\left(y_{i}\right) \rightarrow \inf f \\
& \Rightarrow \quad y_{i} \rightarrow y \& \quad f(y)=\inf f
\end{aligned}
$$

Back to Minimox
Setting
with some core

- P as above con replace by anti-gnod-lik
- $f: \mathbb{P} \rightarrow \mathbb{R}$ satisties PS
($)$. The anti-grad flow φ^{-2} of f is dellued for all times $t \geq 0$
- \mathcal{F} is closed under φ^{t}
to. f on I is bounded from below:

$$
\left.\inf _{A \in T} \max f\right|_{A}>-\infty
$$

The
(Minimax, II) $\quad=\left.\inf _{A \in f} \max f\right|_{A}$ is a crit value

Ex. Toke $F^{-p t s}$ of P in the previous example.

The pf is very similar to the example

Pf

- Bounded frown below $\Rightarrow c>-\infty$ $\stackrel{R}{\mathbb{R}}$
- Will prove: $\forall \varepsilon>0 \exists x$ s.t.

$$
c-\varepsilon<f(x)<c+\varepsilon \quad \&|\nabla f(x)|<\varepsilon
$$

- Arguing by contradiction, assume that:

$$
\|\nabla f(x)\|>\varepsilon \quad \text { when } c-\varepsilon s f(x)<c+\varepsilon
$$

for some $\varepsilon>0$

- $\exists \quad A \in F_{F}$ sit.

$$
\left.\max f\right|_{A}<c+\varepsilon
$$

- claim $\tau=\left.\frac{2}{\varepsilon} \Rightarrow \max f\right|_{\varphi^{2}(A)}<c-\varepsilon$

Indeed, toke $x \in A$
(a) if $f\left(\varphi^{t}(x)\right)<c-\varepsilon$ for sure $t \in[0, \tau)$ we are dove for

$$
\begin{equation*}
f\left(y^{t}(x)\right) \searrow \tag{137}
\end{equation*}
$$

(b) if $c-\varepsilon<f\left(\varphi^{t}(x)\right)<c+\varepsilon$ for $t \in[0, \varepsilon]$, we hove

$$
\begin{aligned}
& \left|\nabla f\left(\varphi^{t}(x)\right)\right|>\varepsilon \\
& \Rightarrow f\left(y^{t}(x)\right)<\underbrace{c+\varepsilon-\varepsilon^{2} t} \\
& \frac{d}{d t} f\left(\varphi^{t}(x)\right) \leqslant-\langle\nabla f, \nabla f\rangle \\
& \leqslant-\varepsilon^{2} \\
& \Rightarrow \quad f\left(\varphi^{\tau}(x)\right)<c+\varepsilon-2 \varepsilon \\
& <\quad c-\varepsilon \\
& \left.\Rightarrow \quad \operatorname{mox} f\right|_{\varphi \tau}(A)<c-\varepsilon
\end{aligned}
$$

