PartII Lusternik-Schnivelmann

Theory
§ 15 Introduction
Setting : $f: \underset{\text { elosed }}{P} \xrightarrow{\infty} \mathbb{R}, P_{a}=\{f \leqslant a\}$
Q: Get a lowen bound on \mid Prit (f) without nou-degenevacy

Undeclying idea (lsoch neorse \& LS): top change
from P_{a} to $P_{b}$$\Rightarrow$ Crit pts betwen a\& b But Mouse \& LS proces this chonge differently
Romk. LS is mose versqtíle and better adapted to highes dim gevera lize h'ars

- In dim<n, nouse is deepe?

Comparison - Exauples

\mathbb{P}	mouse	$L S$
S^{n}	2	2
$\sum_{g \geqslant 1}^{n}$	$2 g+2$	3
$\mathbb{C} P^{n}$ our $\mathbb{R} P^{n}$	$n+1$	2
$n+1$	$n+1$	3
-3		
do int		
know		
this yet		

Rob. In general LS is very for from sharp
But: any $P^{1 t}$ (closed) admits
$f: P \xrightarrow{\infty} \mathbb{R}$ with

$$
\mid \text { (rit }(f) \mid \leqslant n+1 \text { (Tokens) }
$$

- Sharpues of krorse Theory \leftrightarrow Dit topology; Poincare conj h-cobrdism ere
Next Goal: Proving LS lower bounds start with a very traditional approach in topology Eg. Fomenko-Dubrovin-Novikov (101)
$\$ 16$ Topological Prelininovios:
LS Cotegory \& Cup-length
$X=a$ reasombley good space
Def: LS category of x :

$$
\begin{aligned}
& \text { LS category of } x: \\
& \operatorname{cat}(x)=\min \left\{k \mid \quad x=\bigcup_{i=1}^{k} A_{i}\right\} \text { closed or or }
\end{aligned}
$$

where $A_{i}{ }^{2}$ s ave catractible to $p t$ in X

Ex.

- $\operatorname{cat}\left(p^{h}\right)=2$
- cat $\left(\mathbb{R P}^{4}\right.$ or $\left.\left.\mathbb{C} P^{k}\right) \stackrel{(}{\leqslant}\right) n+1$
- $\operatorname{cat}\left(\sum_{g \geqslant 1}\right)=3$
π^{2}

$$
\begin{aligned}
& A_{1} \square \\
& A_{2} \square
\end{aligned} \quad \sum_{g} \cdot D^{2}=\sum_{2 g}
$$

Rok eat (x) is in general very difficuet to determine. Upper a bounds expl. constructions

Lecture 10
mare generally 02104
$X=n$-dim cw complex

$$
\Rightarrow \quad \operatorname{cat}(x) \leq n+1
$$

PI:: same argument: proceed inherutively
Also note: homotopy invariant
wnnected
Def The cup-length of X (over \mathbb{F})

$$
\begin{gathered}
\operatorname{cl}(x)=\max \left\{k \mid \exists \alpha_{1}, \ldots, \alpha_{k} \in H^{*>0}(x)\right\} \\
\alpha_{1}, \ldots v \alpha_{k} \neq 0
\end{gathered}
$$

Clearly: $0 \leqslant c \mid(X) \leq \underbrace{\operatorname{dim} X}_{\text {when } X}$ is a menitol Q
Rusk: : depends on the ground field

- \exists more general nobious...

Ex. $\cdot c l\left(S^{h}\right)=1$

- cl $\left(\pi^{n}\right)=n \quad \alpha_{i}=\left[d x_{i}\right]$
- $X=P^{2 n}$ closed synplectic

$$
\Rightarrow \quad c \left\lvert\,(P) \geqslant r=\frac{1}{2} \operatorname{dim} P\right., \quad \alpha_{i}=[\omega]
$$

- cl $\left(\Sigma_{g \geqslant 1}\right)=2$
- More generally P closed $\leftarrow P D$ $\operatorname{cl}(P) \geqslant 2 \quad$ over \mathbb{Z}_{2}
when

$$
\begin{array}{ll}
H^{i}(P) \neq 0 & \text { over anything } \\
0<i<k & \text { when orienteble }
\end{array}
$$

Rok Usually $c l(x)$ is not so bond to calmare - pretty primitive ELU.
Prop

$$
\operatorname{cat}(x) \geqslant \operatorname{cl}(x)+1
$$

Rump The gop">" con be hinge but examples ave not "ley" to construct noteimay manifolds you think about at this level
Con-Ex. $\quad \operatorname{cat}\left(\mathbb{R P}^{n}\right.$ on $\left.\mathbb{C} P^{n}\right)=n+1$
Pf
claim $A \subset X$ contractible to a pt

$$
\Rightarrow H^{*}(X, A) \xrightarrow[\text { onto }]{i^{*}} H^{*}(x) \quad \forall>0
$$

Raul. In de Rheo $H^{*}(X, A)$ comes from forms vanishing on A
Pf of the claim

$$
C_{A}(X)=\text { cone oven } A \subset X
$$

$$
H^{*^{*}}(x, A)=H^{*^{0}}\left(C_{A}(x)\right)
$$ essentially by defintion

$$
f_{t}: A \rightarrow X \text { cautroction to a pt }
$$

$$
\begin{aligned}
& f_{0} \div A \hookrightarrow X \\
& f_{1}(A)=p t
\end{aligned}
$$

Define $F: C_{A}(x) \rightarrow x$

$$
\begin{aligned}
& \left\{\begin{array}{l}
F(x)=x \quad \text { tor } x \in X \\
F(a, t)=f_{t}(a)
\end{array}\right. \\
& x \underset{F}{\stackrel{i}{\leftrightarrows}} e_{A}(x) \\
& F i=i d \Rightarrow \underbrace{i^{*} F^{*}=i d \text { in } H^{*}(x)}_{\|}
\end{aligned}
$$

i^{x} is outo
Pf of Prep: Assume the contwory:

$$
\begin{aligned}
& \text { no nold io jolion el }(x) \geqslant \operatorname{cat}(x) \\
& \text { to gol } \\
& \text { iy } x=A_{1} \cup \ldots \cup A_{k} \leftarrow \text { contr in } X \\
& \alpha_{1} \cup \ldots . \alpha_{\hat{1}^{k}}^{\alpha_{1}} \neq 0 \text { in } H^{*>0}(X) \\
& \tilde{\alpha}_{1} \quad \tilde{\alpha}_{k} \text { in } M^{*>0}\left(x, A_{i}\right)
\end{aligned}
$$

Recall $H^{*}(X, A) \otimes H^{*}(X, B) \rightarrow H^{*}(X, A \cup B)$ E.g. think ditl foum vonishis on A \& B

$$
\begin{array}{r}
0 \neq \underbrace{\alpha_{1} v \ldots v \alpha_{k}}_{n} \leftarrow \underbrace{\tilde{\alpha}_{1} v \ldots u \tilde{\alpha}_{k}}_{\hat{\pi}}=0 \\
H^{*}(x) \\
\nless H^{*}(x, \underbrace{\left.A_{1} \cup \ldots v A_{k}\right)}_{x}=0
\end{array}
$$

Ref Havidbook of Alg. Top
Discussion Edited by I.M. Tomes
LS cat is a peculiar notion "not quite happy with itself" some things to keep in mind:

- Not unonotone: $X \subset Y \not \cot (X) \leqslant \cot (Y)$
- \exists a notion of cat (A) : covering A, but coutractibe in X
Then $A C B C X \Rightarrow \operatorname{cat}_{x}(A) \leqslant \cot _{x}(B)$
- But $A=$ retract of $X \Rightarrow \operatorname{at}(A) \leq \operatorname{at}(X)$

$$
\hat{x}
$$

- Cat $x_{x}(A)$ is continuous in A
- $F \longrightarrow E$

$$
\operatorname{cat}(E) \leqslant \operatorname{cat}_{E}(F) \cdot \operatorname{cat}(E)
$$

- homotopy invariant (not quite obvious)
- $\operatorname{cat}(X \cup Y) \leqslant \operatorname{cat}(X)+\operatorname{cat}(Y)$
§17 Lower bound via LS cat

$$
f: \underset{c \text { cosed }}{P} \xrightarrow{c^{2}} \mathbb{R}
$$

This is how they do it in topology texbooks

Thm (LS) Assume thet Crit (f) ave isobled

$$
|\underbrace{\text { evit values of } f}_{\operatorname{cv}(f)}| \geqslant \operatorname{cat}(P)
$$

Con $|\operatorname{lrit}(\mathrm{f})| \geqslant \cot (P) \geqslant \operatorname{cl}(P)+1$
Runl conbe stict
Con P $\quad\left|C_{r i} t(f)\right| \geqslant$

$$
\left.\begin{array}{cc}
\mathbb{E P n} \& \mathbb{R P}^{2} & n+1 \\
\sum g \geqslant 1 & 3 \\
\pi n & n+1
\end{array}\right\} \begin{aligned}
& \text { conpleting } \\
& \text { Qhe pf of } \\
& \text { ivequalities } \\
& \text { trom } P \cdot 101
\end{aligned}
$$

Pf (outline)

- $f: P \rightarrow \mathbb{R}$
with exactly m critical values $c_{n}<\ldots<c_{m}$ \& isolated Crit (f)
\Rightarrow cover of P by m contr. to pt celts
- Do inductively by moving upward

Assume the corn for
P_{a} is constuckel C

$$
(k-1) \text { set }
$$

$\Rightarrow a$ cover of $P_{b} b_{2}$ k sets
-

$$
\tilde{U}_{x}:=\left\{\begin{array}{l}
\text { nflow invaviant }(\text { in } a<-f \leqslant b) \\
n b d \text { of } \Sigma_{x}
\end{array}\right.
$$

Observations:
\rightarrow - U_{2} is cotrochible by
upward/dowrwand How in a suall ubd B_{x} of x

- Bx is coutr to x
$\Rightarrow A_{k}=\frac{11}{x} U_{x}$ is coutr bo a pt $_{P_{B}}$
\rightarrow • $P_{b}>\left(\frac{11}{x} V_{x}\right)$ is homotopy equiv to I_{a} (Infect homeo) $\Rightarrow a$ cover of $P_{b} \backslash\left(\frac{11}{x} t_{x}\right)$ induclia

$$
\text { by } k-1 \text { sets } A_{1}, \ldots, A_{k-1}
$$

Togethr $A_{i}, \ldots, A_{k-1}, A_{h}$ the regrised cover of P_{b}

Q But how few Crit pts con a function on f have?

Thu (Takens, Inventioner, 1968)

$$
\begin{aligned}
& \operatorname{dim} P=k \\
& \Rightarrow \exists f: P \xrightarrow{c^{\infty}} \mathbb{R} \text { with }|\operatorname{crit}(f)| \leqslant n+1
\end{aligned}
$$

Cor $\operatorname{eat}(P) \leqslant \operatorname{dim} P+1$
P.also know because $P=C W$ of $\operatorname{dim} \leqslant n$ or selecting disjoint subset in a cover

Outlim of the pf

- Start with $f_{0}: P \rightarrow \mathbb{R}$
a moss function with owe max 2 one mire
- Sliding handles \Rightarrow con hove all critical plo of index i_{k} on one level $f=c_{k}$ and

- Ex - show that $\left\{f=c_{k}\right\}$ is connected
Rum Need to tweet the case

$$
n=2 \text { separotely }
$$

\downarrow

- Pick a tree, $\underbrace{\text { tref }}_{\text {_a union of smooth arcs }}$, $f=c_{k}\}$ intersecting only at thar ends homes to a hie

containing all critical pbs on $f=e_{k}$

- Contruct all Γ_{k} to pb

$$
P \cong P / \| T_{L} \quad \text { move precicely }
$$

\exists a surooth mop $P \xrightarrow{G}$ X ckingon

$$
\text { s.t. } P \backslash \| P_{k} \longrightarrow P \backslash\left\{x_{0} \ldots, x_{n}\right\} \text { iss }
$$

is a diffeo \& $\Gamma_{i}=G^{-1}\left(x_{i}\right)$

- Now $f_{1}=f_{0} G^{-1}: P \xrightarrow{c^{0}} \mathbb{R}$ is smooth outside X and orly C° at the phs of X
- Modity fi neor each x_{i} to mele it smooth and hove ouly owe cribical pis (Takens, Thm 2.7 - elementery but nom-ob vions)
§18. The min/max primeiple
And this is haw they do it in dynomies / caleulus of voriations
- $f: I \longrightarrow \mathbb{R}$, anti-grad flow closed unnifolld \leftarrow this couditia con be siguiticoutly ulcxed
- $y=a$ clan of cowpect
subseh of I clused
uvder $\varphi^{r \geq 0}$
Ex. Fix $\alpha \in \pi_{k}(\underline{D})$

$$
F=\left\{S^{h} \xrightarrow{u} P \mid[n]=\alpha\right\}
$$

- Fix $\alpha \in H_{*}(P)$
$F_{F}=\{$ cycles upresenting $\alpha\}$
E.g.. images of singular cycles (over \mathbb{Z}_{2})
- mops $\sigma: M \rightarrow P$ s-V.

$$
\sigma_{*}([M J)=\alpha
$$

(113)
set

$$
c_{f}(f)=\inf _{A \in f}^{\sup } \underbrace{\operatorname{sox}}_{\operatorname{mox}} f \mid A
$$

(minimex Principles) $C_{F}(f)$ is a critical value

Rus. Versatile 8 impozhent

- condidious coube relaxed
- a lot of applications

Ex. $\mathcal{F}=$ collection of all its in P

$$
C_{F}(f)=\inf _{A \in P} f(A)=\min f
$$

- $F=\{P\}<j u s t$ one set P itself

$$
c_{q}(f)=\max _{P} f=\operatorname{maxf}
$$

Pf of the min/max principle:- neal y obvious

- $c_{i}=\inf _{A \in F} \max _{A} t \|_{A} \quad A$ is compact
$7=\{A\} ; A$ is compact
I is closed under $\varphi^{t \geqslant 0}$
Assume e is not a critical value - a pf by contradiction
- $\exists \quad \varepsilon>0 \& \quad \tau>0$ sit.
$\uparrow f(x) \leqslant c+\varepsilon \Rightarrow f(\varphi \tau(x)) \leq c-\varepsilon$
compootnen \& c is not a critical value

- As said assume c is not a critical value take A so that $\max _{A}=c+\delta<c+\varepsilon$

$$
\begin{array}{r}
\operatorname{mox} f_{\varphi^{\top}(A)}^{A^{\prime} \in \mathcal{F}}=\underset{\substack{\text { beceux } \\
\varphi^{t r 0} \text { is invariant }}}{c-\varepsilon<c>} \\
<
\end{array}
$$

- Our next goall is to illustrote how Miu/mex warls by several siuple applicohious of the Edea.
- wesll keep on couing back do it over \& over

