$\$ 10$ Floen Theovy Pevipective
Lecture $5^{0 / 28}$
$f: \mathbb{P} \longrightarrow \mathbb{R}$ morse
\Rightarrow cw-couplex s.t.

$$
\operatorname{crit}_{k}(f) \underset{1-1}{ } k \text {-cells }
$$

$\Rightarrow 3$ a couplex $\left(C_{*}, \partial\right)$ s.t.

- C_{k} is genevoted by $\operatorname{Crit}_{k}(t)$

$$
\cdot H_{*}\left(C_{*}, \partial\right) \cong H_{*}(P)
$$

Oun goal is to describe ∂ explicitly withant using olg topology and CW-couplex str.
Ded. $\left(C_{*}, \partial\right)=\left(C M_{*}(f), \partial\right) \leftarrow$ new is colled the
mouse couplex of f
we heve

$$
\begin{aligned}
& \underset{\partial}{\partial x}=\sum_{\substack{ \\
C_{r i} A_{k}(f)}} m(x, y) y \\
& C_{i-t_{k-l}}(f)
\end{aligned}
$$

wort to describe the Mouse diffevertid explicitly

Idea
ind $=k$

$\operatorname{ind}(x)-\operatorname{ind}(y)=1$
11) generically
finite number of - anti-quod trojectoring from x to y

$$
m(x, y)=\#_{i}^{\#} \text { of tray } x \rightarrow y
$$

parity over $\mathbb{F}_{2}=\mathbb{Z}_{2}$ or with sighs of over \mathbb{Z}
Ex Height function on π^{2} and on (II)

$$
\partial=0
$$

$$
\begin{aligned}
& \partial x_{1}=x_{3}=\partial x_{2} \\
& \partial x_{3}=(1-1) x_{4}=0
\end{aligned}
$$

In wht follows I'll skip most of the pfs, but exptain ideas. Usually intuitively clean, but tedious
Retereuces:

- Jost
- Audin-Damian
- Banyago - Huztubise

Construction of the Norse
$\$ 10.1$ differential ∂ : Preliminaries

- While $C M_{*}(f)$ is completely determined by f, O depends on an extra str: a R. metric
- Fix a R.m. on M Cha to be from a certain opel and dense set of R.M.'.s)
Consider the antigradient flow of f :

$$
\dot{x}=-\nabla f(x): \varphi_{L}
$$

Set $\mu(x, y)=\left\{z \mid \varphi_{t}(z) \longrightarrow x t \rightarrow-\infty\right\}$

Crit
Denote the index of x by $\mu(x)$.
Note: "dim $\mu(x, y) \geqslant 1$ " if $\neq \varnothing$

Thy For a generic metric, $\mu(x, y)$ is a smooth manifold of dimension $\mu(x)-\mu(y)$

Explanation

$$
\begin{aligned}
W^{u}(x) & =\left\{p \mid \varphi^{t}(p) \rightarrow x, t \rightarrow-\infty\right\} \\
& =\text { uustoble mauifold } \\
W^{s}(x) & =\left\{p \mid \varphi^{t}(p) \rightarrow x, t \rightarrow+\infty\right\} \\
& =\text { stable manifold }
\end{aligned}
$$

Morse Lemma or just non-deg \Rightarrow

$$
\begin{aligned}
\Rightarrow\left\{\begin{array}{l}
w^{u}(x) \\
\cong D^{k}, \quad k=\mu(x)=i n d(x) \\
w^{s}(x)
\end{array}\right. & \cong D^{n-k} \\
\mu(x, y) & =w^{u}(x) \cap w^{s}(y)
\end{aligned}
$$

genevic metric $\Rightarrow w^{4}(x) d w^{s}(y)$ requives a $p f$ but not houd
$\Rightarrow \mu(x, y)$ is a manitoll \&

$$
\begin{aligned}
\operatorname{dim} \mu(x, y) & =n-\operatorname{dim} w^{\mu}(x)-\operatorname{dim} w^{s}(y) \\
& =n-\mu(x)-(n-\mu(y)) \\
& =\mu(x)-\mu(y)
\end{aligned}
$$

Rah a) $\operatorname{dim} M<0 \Rightarrow M=\varnothing$
b) $\operatorname{dim} \mu \geqslant 1$: with every pt Il coubeins a whole trajectory (Here $x \neq y$)
\Rightarrow c) $\quad \operatorname{ind}(x) \leqslant \operatorname{ind}(y)$

$$
\Rightarrow \mu(x, y)=\varnothing
$$

Ex. Height function on π^{2}

How to achive tronsversality Look at $\left(w^{4}(x) \cap\{f=c\}\right) \cap\left(w^{5}(y) \cap\{f=c\}\right)$ $f(y)<c<f(x)$, perturb the metric slightly reg above c to alter
§10.2 Digression: sliding handles
Recall from $\S 9$
Prop: P admits a morse function sot.

$$
\begin{gathered}
f(x)>f(y) \Leftrightarrow \quad \mu(y) \\
\forall x, y \in C_{\text {rit }}(f)^{\mu(x) \geqslant}
\end{gathered}
$$

Pf-outline: start with some f and modify it by moving eritiol pos by each other
Need this:
x y the all critical pts wite

$$
\begin{gathered}
a<f(y)<f(x)<b \\
\quad \mu(y)>\mu_{l}(x)
\end{gathered}
$$

\Rightarrow con modify f in $[a, b]$ so that

$$
f(y) \leq f(x)
$$

Idea

$$
\begin{aligned}
& \Sigma_{x}=\left(w^{4}(x) \cup w^{s}(x)\right) \cap f^{-1}([0, b]) \\
& \Sigma_{y}=\left(w^{k}(y) \cup w^{s}(y)\right) \cap f^{-1}([a, b])
\end{aligned}
$$

Generically

$$
\begin{gathered}
\sum_{x} \cap \sum_{y}=\varnothing \\
\mu(y)>\mu(x)
\end{gathered}
$$

modify f in a id $N>\sum_{x}$ (or N, \sum_{y}) keeping if the some near $\partial \Sigma^{y}$ \Rightarrow con give x any value in (a, b) by modifyin how f changes along integral curves of ∇f
N is sketched unrealistically.
A better way:

Con change f so the

- Uumeins the some near ∂M
- same - 8 t up to scaling
- any value $f(x)$ in (a, b)
\$10.3 more modern \& different perspective

$$
M(x, y)=\text { the space of perometrized }
$$

$$
\text { trajertoring } t \mapsto \varphi^{2}(z)
$$

$\}^{z}$ from x to y trajutory \longleftrightarrow initial condition

$$
\varphi^{t}(z) \longleftrightarrow z=\varphi^{\bullet}(z)
$$

iR
Time shit: $t \mapsto \varphi^{t}(z) \quad z \mapsto \varphi^{\top}(z)$

$$
t \stackrel{s}{\mapsto} \varphi^{t+T}(z)
$$

\Rightarrow free \mathbb{R}-action on $M(x, y), x \neq y$
Spar of unpravametrized trajectories

$$
\hat{\mu}(x, y)=\mu(x, y) / \mathbb{R}
$$

Con $\hat{\mu}(x, y)$ is a smooth manifold of $\operatorname{dim} \mu(x)-\mu(y)-1$
E.g. $\mu(x)=\mu(y)+1 \Rightarrow \hat{\mu}$ is disco

Note. μ \& $\hat{\mu}$ ave usually non-con identified with $\mu \cap\{f=c\}$ $f(y)<c<f(x)$ \uparrow

For a gevent metric:
The $\hat{\mu}(x, y)$ has a compoctification formed by broken trajectories
 such trajechovies

$$
\begin{aligned}
& x=z_{0} \leadsto z_{1} \leadsto \ldots \leadsto z_{2}=y
\end{aligned}
$$

form a compact manifold with corners.

Rok

$$
\begin{aligned}
& f(x)>f\left(z_{1}\right)>\ldots>f(y) \\
& \mu(x)>\mu\left(z_{1}\right)>\ldots>\mu(y)
\end{aligned}
$$

Con.

$$
\begin{aligned}
& \mu(x)=\mu(y)+1 \\
\Rightarrow & \hat{\mu}=\text { comport } \Rightarrow \text { finite collection } \\
\Leftrightarrow & \underline{o f} \text { pts } \\
\Leftrightarrow & \frac{\text { finite wong traj from } x \text { to } y}{(\text { for a generic metric) }}
\end{aligned}
$$

§10.4 Definition of ∂
Fix a geneur metric so that all the this hold

$$
\mu(x)=\mu(y)+1
$$

- Over \mathbb{Z}_{2}, Set

$$
\begin{gather*}
\mathbb{Z}_{2} \ni m(x, y)=|\hat{\mu}(x, y)| \bmod 2 \\
\partial x=\sum_{y} m(x, y) y \tag{*}\\
\mu(x)=\mu(y)+1
\end{gather*}
$$

- Over \mathbb{Z} (and hence on ring) Need to take into account orientations Fix orientation of $T_{x} w^{u}(x) \quad \forall x$
\Rightarrow coorientefiom of $T_{x} w^{s}(x)$

$$
\Rightarrow\left\{\begin{array}{l}
\text { orientations of } w^{u}(x) \\
\text { coorientetions of } w^{s}(x)
\end{array}\right.
$$

\Rightarrow orientations of

$$
\mu(x, y)=w^{u}(x) \cap w^{s}(y)
$$

- When $\mu(x)=\mu(y)+1$
$\mu(x, y)=$ disj union of finite \#
of trajectories
- Each trojectoug Xis a so oriented by the flow
\Rightarrow Two orientations on γ $\operatorname{sigh}\left(X^{\prime}\right)=\left\{\begin{array}{ll}+1 & \text { orientations agree } \\ -1 & -\end{array}\right.$ - disagree $\quad y$
And

$$
\frac{m(x, y)=\frac{\sum \operatorname{sign}(\gamma)}{x \stackrel{\gamma}{\sim} y}}{\frac{m}{x}}
$$

*: $\partial x=\sum m(x, y) y$

$$
w^{\{ }\{y) \cap w^{4}(x)=\gamma_{1} \cup \cup \gamma_{2}
$$

Ex. Do there:

\$10.5Checking that $(C M(f), \partial)$ is a couplex
The $\partial^{2}=0$
Pf. For the soke of simplicity over \mathbb{Z}_{2}

$$
\begin{aligned}
& \partial^{2} x=\partial \sum_{y} m(x, y) y \\
& \mid \mu(x)=\mu(y)+1 \\
& \mu(y)=\mu(z)+1
\end{aligned}=\sum_{y} m(x, y) \sum_{z} m(y, z) z \quad\left(\sum_{z} m(x, y) m(y, z)\right) z .
$$

$\bmod 2$
\# of broken trajectories (one break) from x to $z(\bmod 2)$
But $\hat{M}(x, y)$ one -din manifold its cowpachifiefion: $\$_{\text {or }}$ I closed $\overrightarrow{i r t e r v a l}$
\Rightarrow broken trojectories come in pairy
\Rightarrow \# is even

$$
\begin{aligned}
& \Rightarrow \sum_{y} m(x, y) m(y, z)=0 \bmod 2 \\
& \Rightarrow 0^{2}=0
\end{aligned}
$$

set $H M_{*}(f)=H_{*}(C M(f), \partial)_{j}$ fixed coefficient
Tho (Morse theory)

$$
H M_{*}(f)=H_{*}(P)
$$

Rok. As a consequence, P.L.s is independent of $f \leftarrow$ con be proved directly

- We hove of ready seen some consequences: Morse inequalitios, etc
$\left.\begin{array}{ll}\text { Outline of the pf: } & \text { Ref } \\ \text { "Classical" Morse theory }\end{array} \right\rvert\,$ - Banyaga-Murkbise
Morse function $f \leadsto$ Cllulor derowjositi.

$$
\text { on } M
$$

$$
\text { of } M
$$

$$
\text { Crit }_{k}(f) \leadsto w^{u}(x) \leftarrow{ }^{u} c e l l s "
$$

$$
\operatorname{cri}_{1} t_{k}(f)
$$

$$
\begin{aligned}
& \frac{\text { Morse complex }}{C M_{k}(f)}<\sim_{\partial_{M}}=\frac{\text { Cellular complex }}{\text { of } M: C(M)} \\
& \Rightarrow \partial_{c w} \\
& H_{*}\left(C M(f), \partial_{M}\right.=\underbrace{H_{*}\left(C(M), \partial_{c w}\right)}_{H_{*}(M)}<
\end{aligned}
$$

EII. Calulations of $H_{*}(M)$ using Monse homology; Applicotions

$$
H_{*}(M)=H_{*}\left(H M_{*}(f), \partial_{M}\right)
$$

- very difficmet

Worls well whan $\partial=0<$ to degl wiM1 in general
Examples (over \mathbb{Z} or \mathbb{F})

1) $\frac{\sum_{g} \text { on } \pi^{2}}{x}$

$$
\begin{aligned}
\partial x= & y_{1}+-y_{1} \\
& +y_{2}+-y_{2} \\
= & 0
\end{aligned}
$$

z
unstoble trej of $y_{1} \& y_{2}$ ohould come from x

$$
\partial y_{1}=0=\partial y_{2}
$$

$$
\begin{array}{ll|}
\Rightarrow & H_{*}\left(\Sigma_{g}\right)=\left\{\begin{array}{ll}
\mathbb{F} & k=2 \\
\mathbb{F}^{2 g} & k=1 \\
\mathbb{F} & k=0
\end{array} \sqrt[\text { Ovientations: }]{ }\right. \text { Ws(og) } \\
\hline y
\end{array}
$$

2) $\mathbb{C} \mathbb{P}^{k}$ (over \mathbb{Z} or \mathbb{F})

$$
\begin{aligned}
\mathbb{C} P^{n} & =\left\{\left.\left(z_{0}: \ldots: z_{n}\right)\left|\sum\right| z_{j}\right|^{2}=1\right\} \\
f(z) & =\sum \lambda_{j}\left|z_{j}\right|^{2} \\
\lambda_{0} & <\lambda_{1}<\ldots<\lambda_{n}
\end{aligned}
$$

Ex. a) Crit $(f)=$ "coordinate axes"

$$
=\left\{(0, \ldots, 0,1,0, \ldots, 0)=x_{j}\right\}
$$

b) In coordinates

$$
u=\left(u_{0, \ldots}, u_{j-1} 1, u_{j+1} \ldots, u_{n}\right\}
$$

At x_{j}

$$
\begin{gathered}
d_{x_{j}}^{2} f=\left(\lambda_{0}-\lambda_{j}\right)\left|u_{0}\right|^{2}+\left(\lambda_{i}-\lambda_{j}\right)\left|u_{1}\right|^{2}+\ldots \operatorname{skip}\left(\lambda_{j}-\lambda_{j}| \rangle\right. \\
\ldots+\left(\lambda_{n}-\lambda_{j}\right)\left|u_{n}\right|^{2}
\end{gathered}
$$

$\Rightarrow f$ is morse \& $\mu\left(z_{j}\right)=2 j \leftarrow z_{j}$ is a crumples

$$
\Rightarrow \quad H_{k}\left(\mathbb{C P}^{4}\right)= \begin{cases}\mathbb{F} & 0 \leqslant k=2 j \leqslant 2 n \\ 0 & \text { otherwise }\end{cases}
$$

3) $\mathbb{R P}^{h}$ over \mathbb{Z}_{2}

Similarly $\mathbb{R} P^{n}=\left\{\left.\left(y_{0}: \ldots: y_{n}\right)\left|\sum\right| y_{j}\right|^{2}=1\right\}$

$$
f(y)=\sum \lambda_{j}\left|y_{j}\right|^{2}
$$

Ex. similarly
a) $x_{j}=(0, \ldots, 0,1,0, \ldots, 0) \leftarrow$ Critical ph
b) Hessian : similar - same colulation

$$
\Rightarrow \mu\left(x_{j}\right)=j
$$

c) $\curvearrowright=0$ over \mathbb{Z}_{2} : exactly two trajectories from x_{j+1} to x_{j} (for the round metric)

Rms. Over \mathbb{Z}, harder -orientations
4) Hamiltonian $\$^{\prime}$-actions or torus $01 / 21$

P a syuplectir wouitold (cloxed) actions $H: P \rightarrow \mathbb{R}$ Hamiltonion geveratis on ${ }^{\$ 1}$-action

$$
\operatorname{Crit}(H)=\text { Fixed } p h=P^{f^{\prime \prime}}=\{x\}
$$

$\begin{aligned} & \text { assume iso bbed }\end{aligned} \left\lvert\, \begin{aligned} & \frac{\text { Details: }}{\text { Last yeor syurl }} \\ & \text { geometry clans }\end{aligned}\right.$ $d_{x}^{2} H$ have even index
$\Rightarrow \partial m=0 \quad$ Similou to epk

$$
\operatorname{dim} H_{k}=\left|\operatorname{crit}_{k}(t)\right|
$$

- Worls for a lot of intevesting manitolds:

Flag mavitolds, Graesmarnions, syuplectic tovic monitolds, éte

- Same for π^{r}-aclions with moment wap $\left(H_{1}, \ldots, t l_{r}\right)$
set $H=\sum \lambda_{j} H_{j}$ - generolizetion of $\mathbb{E} P^{k}$

Two Textbook Applications

1) The künneth founula for monitolds:

Po, P_{1} two closed manifolds

$$
\Rightarrow \quad H_{*}\left(P_{0} \times P_{1}\right)=H_{*}\left(P_{0}\right) \otimes H_{*}\left(P_{1}\right)
$$

field
Pf. fo a morse fuvchien on P_{0}

$$
\cdot f_{1}-\quad-\quad-P_{1}
$$

- Dick generic metro \Rightarrow the prods A we tor o. $P_{0} \times P_{1}$ is geod for us

$$
C M_{*}\left(f_{0}+f_{1}\right)=C M_{*}\left(f_{0}\right) \otimes C M_{*}\left(f_{1}\right)
$$

as complexes
Algebraic Künneth sa needs a bield

Rush. Likewise over \mathbb{Z} on a ring but the formula is more involved \leftarrow algebra
2) Poincové Duality

I smooth closed mouitold, $\operatorname{dim} P=n$

$$
H^{k}(P) \cong H_{n-h}(P) \text { : over } \mathbb{Z}_{2}
$$

- over other fields if orient table
Cor: : $\quad b_{k}=b_{n-k}$
Pf f mouse $\Leftrightarrow-f$ is mouse

$$
\nabla f \quad \nabla(-f)=-\nabla f
$$

interval en ives
some curves but troweled backward

$$
\left.\begin{array}{rr}
\operatorname{Crit}_{k}(f) & =\operatorname{Crit}_{n-k}(-f) \\
\Rightarrow & \operatorname{CM}_{k}^{*}(f) \\
\partial_{M}^{*}
\end{array}\right\}=M_{n-k}(-f)
$$

use the harris

$$
\begin{aligned}
& H^{*}(C):=H_{*}\left(C^{*}\right)=H_{*}(C)^{*} \text { over a kiel } \\
& \Rightarrow \underbrace{H_{*}\left(C M^{*}(f), \partial_{M}^{*}\right)}_{H^{*}(P)}=\underbrace{H_{*}\left(C M(-f), \partial_{M-x}(-f)\right)}_{H_{n-*}(P)} \\
& \text { Mass Theory for }(-f) \sum_{0}^{\nabla}
\end{aligned}
$$

$\$ 12 \frac{\text { Existence of Mouse functions }}{\text { Pint in }}$ Port I: via Trousversality the
P closed manifold, $k \geqslant 2$ l.g. ∞
Tho mouse functions form an open and cleuse set in $C^{k}(P)$
Cor Every manifold admits a morse function. Moveoven, every function con be C^{k}-approximal el by mouse fractions.
well give two pts
Pf 1: based. on Thonsversolily

$$
\text { Pf } 2 \text { (Outline) - divest }
$$

Revisiting the definition of
Mouse funclion

$$
\begin{aligned}
f: P \rightarrow \mathbb{R} & \Longleftrightarrow d f=\text { sechion of } T^{* P} \\
& \Gamma_{f}=\text { groph }(d f) \\
x \in \operatorname{Crit}(f) & \Longleftrightarrow d f(x)=0 \\
& \Longleftrightarrow x \in \mathbb{R}_{f} \cap P \leftarrow \text { zevo section }
\end{aligned}
$$

Claim x is non-deg $\Leftrightarrow \Gamma_{f}+P$ at x

$$
(T_{x} P+T_{x} P=\underbrace{T_{(x, 0)} T^{*} P}_{T_{x} P\left(T_{x}^{*} P\right.}
$$

Pf.

- $T_{r} P_{f}=\operatorname{groph}\left(A: T_{x} P \rightarrow T_{2}^{k} P\right)$

$A=$ lineavizgtion of $s: y \rightarrow d f(y)$ at x (77)

$$
\begin{aligned}
T_{x} \Gamma_{f}+P \text { at } x & \Leftrightarrow \operatorname{ker} A=0 \\
& \Leftrightarrow A \text { is outo } \\
& \Leftrightarrow A \text { is nou-deg }
\end{aligned}
$$

- A is essentially the Hessicu

$$
\begin{aligned}
& d_{x}^{2} f(v, w)=\underbrace{A(\sigma)}_{T_{x} P}(w) \\
& T_{x}^{*} P
\end{aligned}
$$

$$
\underbrace{A \text { is uou-dy }}_{\Leftrightarrow T_{x} P_{f} \lambda P} \Leftrightarrow d_{x}^{2} f \text { is non-dey }
$$

Con f is Mouse

$$
\Leftrightarrow \Gamma_{f} \nleftarrow P
$$

Idea of the rf of \exists marse functions

- start with soure fo. Need to approx byamouse functia f
- Tronsversality thu \Rightarrow dfo con be approximualed by $\alpha \in \Omega^{l}(P)=$ sechions of $\tau^{*} P$ so the Γ_{α} a P. Difficulty: Need $\alpha=d f$

Transuesality Theorems: Review
(Withat $p t_{s}$) \& Pf I
Rel. E.g. Arnold-Varcherko-Gusein-Zade or many other text books
Definitions Based on Sardis Lemma

$$
\begin{aligned}
& F ג Z \text { if } \\
& \operatorname{DF}\left(T_{x} X\right)+T_{F(x)} Z=T_{F(x)} Y \\
& \uparrow \forall x \in X \text { with } F(x) \in Z
\end{aligned}
$$

Ex $\operatorname{dim} X+\operatorname{dim} Z<\operatorname{dim} Y, F \pitchfork Z$ Opplition

$$
\Rightarrow \quad F(x) \cap Z=\varnothing
$$

Key pt: Almost all $F A Z$ of hen even extra constraints on F

Ex. $L_{0}, L_{1} \subset \mathbb{R}^{3}$ two cubeddol loops For almost all $v \in \mathbb{R}^{3}$

$$
\left(L_{0}-\sigma\right) \Omega L_{1}=\varnothing
$$

$\xrightarrow{\text { Hint: }} \cdot L_{0} \times L_{1} \xrightarrow{\Phi} \mathbb{R}^{3}$

$$
(x, y) \longmapsto x-y
$$

- $\left(L_{0^{-}} v\right) \cap L_{L} \neq \varnothing \Leftrightarrow \exists x, y$ st. $x-v=y$

$$
\begin{aligned}
& \Leftrightarrow x-y=v \\
& \Leftrightarrow v \in \Phi\left(L_{0} \times L_{1}\right)
\end{aligned}
$$

- $\operatorname{dim}\left(L_{0} x L_{1}\right)=2, \operatorname{dim} \mathbb{R}^{3}=3$

Sardis $\Rightarrow \Phi\left(L_{0} \times L_{1}\right)=$ zero meagn nowhere dense closed
\Rightarrow For an open full measne set in \mathbb{R}^{3}

$$
\left(L_{0}-v\right) \cap L_{1}=\varnothing
$$

A sequence of settings increasing constrains or F : trousversdity theoverus
Setting 1.
This F内Z for open $X \xrightarrow{F} Y$
v and dense set in

$$
c^{k}(x, y)
$$

Xclosed manifold at least $1 \leqslant k \leqslant \infty$
Rok. Here and below it os clear that the condition is open in C^{k} tor.

- Pf is based ar sardis lemma
- If $F: X \longrightarrow Y$ we soy $X \underset{X^{2}+z}{ }$

Setting 2

$$
\begin{array}{ll}
Y=X \times K>Z, & F: X \rightarrow K \\
\Gamma_{F}: x \hookrightarrow Y & x \longmapsto(x, F(x))
\end{array}
$$

Thy 2 P A Z For an open \& deus set in $C^{k}(X, k)$

Much mos restrictive
clan: $\Gamma_{F}: X \hookrightarrow Y=X \times K$

$$
\begin{equation*}
\underbrace{\pi \cdot P_{F}=i d}_{\text {section of }} \tag{80}
\end{equation*}
$$

$\frac{\text { Setting } 3}{z \subset Y}$:

Tm 2介
same but

Thm3 shz For on open and dense set of C^{k}-sections of π.

Rok. The clan of sections is much smaller thou all $C^{k}(X, Y)$

Outlive of Tho \Rightarrow Thu 3
Need density
$s_{0}: X \rightarrow Y$ a given section
$F: X \rightarrow Y, F \dot{ } \quad F \quad C^{k \geqslant 1}$-close to 1_{0}
 not a section: $\pi \cdot F(2) \Rightarrow x$

$$
\begin{aligned}
\varphi: x & \longmapsto \pi \cdot F(x) \\
X & \longrightarrow X
\end{aligned}
$$

$\frac{\text { Claim }}{\left(E_{X}\right)} \varphi: X \rightarrow X$ a differs, c^{k} close to id
Replace F by $s:=F_{0} \varphi^{-1} \times z$

$$
\approx 1_{0}
$$

Rum Itis esseutioal thet

$$
\varphi \approx^{c^{k \geqslant 1}} i d
$$

Not enough $\varphi \approx{ }^{\circ}$ id

