morse Theory, moth 232 2021 W
$\frac{\text { A few words about the class: Not on Canvas - email Zoom links }}{\text { - Noctule }}$ (05

- Post lecture notes

Record and post videos

- No exams or kw

But mention problems in class

- Presentations (optional)
- the end of the varter
- No textbook - diseur sources below
- Prerequisites: The manifolds sequence
- Basic Differential Geom
- (Colhomology

Textbooks and other sources:
$\left.\begin{array}{l}\text { - Morse Theory" by J.Milnon } \\ \text { "Lectures on morse theory, } \\ \text { old and new" R. Bott }\end{array}\right]$ Before

$$
\begin{aligned}
& \text { old and new" R. Bott } \\
& \text { BAMS I (1982), 331-358- Rec }
\end{aligned}
$$

Flown

$$
\begin{aligned}
& \text { - Many Diff Top books: } \\
& \text { Midsh, } \frac{\text { Fomenko-Dubrovin-Novikor }}{\text { not so bad }} \int \text { Theory }
\end{aligned}
$$

- "Riemannion Geometry and

Geomets'r Analysis" J. Josh
(Cha pf) 20il \& Recommend d
"Morse Theory and Flown Homology"

$$
\text { M. Audio and m. Domian } 2014
$$

- Lectures on Morse Homology
A. Banyaga and D. Murtubise 2004

In mid 80s a new way of thinking about mouse Theory - Fioen theory was develop ped.
It is actually a variant (subset) of Morse theory but it has influenced the theory as d a whole.
Our teotment in this class will be modern based on this new perspective but we probably only briefly torch upon Fiber theory as such.
suggested Topics for Presentotions

- Morse-Novikar Theory (Erman)
- Morse-Bott \& Equiv Morse Theory
- Morse theary for geadesies orse theory
(connecking two podes milnors book
- Morsethorg for clised geodesics and Lustermik-Fet thm (Bott's notes)
- Convex Mamiltonion systems (Periodic oubits. a la Ekeland, Fodel-Re binow'itz, Af or ouvex care
- n-cobordis thm (milnor) (Appl to
- Lefochetz hyperplane thom top \& alg
- Bott periodicity thm . \int geometry
- Hamiltonian circle actions: syuplectic geometry, colurlation of Chomology a la $\subset p^{n}$, ete
whet morse theory is about
$P=$ a reasonable space
e.g. finite on inf. dim manifold:
a closed manifold space at closed loops, or poths with fixed pts
$f: \mathbb{P} \rightarrow \mathbb{R}$ revionobly nice "smooth"furch
1-g. a "generic" smooth function on a smooth closed manifold on length or bettor energy

$$
x \mapsto \int|\dot{x}|^{2} d t
$$

Goal: relate critical pos of f
to the topology of P form ology on
homology type
Not pt set topology
Egg.- Lower bound on 1 Prit(f))
in terms of $H_{*}(P)$
In peraticulon the existence of Crit (f)
How do we know \exists at least one?
E.g. existence of closed geodesics

Conversely: understand the tor of P

$$
\text { (1.g., } H_{\infty}(P) \text {) via the sh }
$$

$$
\begin{aligned}
& \text { Pig. Mヵ (p) via the sha } \\
& \text { of } f \text { and in ponticulan Crit } f \text {) } \\
& \text { t mow is to }
\end{aligned}
$$

+ more info
Note: Many hugely important objects in

$$
\begin{aligned}
& \text { moll in phyurs are critical } \\
& \text { phot some functional farina }
\end{aligned}
$$

pi of some functional f usrintional principles

Part I: Morse theory for
finite-dim manifolds
Setting: $P=M: \underbrace{\text { closed }}_{\text {con be relaxed }}=$ connect, $\partial P=0$

$$
\begin{aligned}
& f: P \xrightarrow{C^{k}} \mathbb{R}, \begin{array}{l}
\text { Can be relaxed } \\
k \geqslant 2 \text { usually } \infty \\
\text { Crit }(f)=\{p \mid \underbrace{d f(p)=0}\} \\
\text { the set of } \\
\text { Cringe pto }
\end{array} \quad \begin{array}{l}
L_{x} f(p)=0 \forall x \in T_{p} P
\end{array}
\end{aligned}
$$

Main question: produce a meoniugfol lower bound for \mid Crit $(f) \mid$.
\$1 Motivation \& Exauples:
E.g. $\mid \underbrace{|\operatorname{cnit}(f)| \geqslant 2-\text { not very interesting. }}$

$$
B \text { mex \& min }
$$

Rink. But here we con alveody look at some interacher with top

- what if $|\operatorname{Crit}(f)|=2$

$$
\operatorname{lvit}(f)=\{\operatorname{mox}, \min \}
$$

Fact: P $\underset{\text { homes }}{\text { sh but not necessarily }}$
Areturn to this later
$\underset{\text { Ex }}{\underset{\text { sufface }}{\text { Closed }}} \rightarrow \underset{\mathbb{R}^{3}}{P} \rightarrow \mathbb{R}$ height funchion

$$
p \in \operatorname{Crit}(t) \Leftrightarrow T_{p} P \text { is hoiizoutal }
$$

$$
\#=4=2
$$

$$
\#=6
$$

minpasibly
These and similan excuples suggest

$$
\operatorname{zg}_{s^{a}} d d d s\left\{\left.\left(\begin{array}{l}
0 \\
\vdots \\
\partial
\end{array}\right) \xrightarrow[\rightarrow]{f} \right\rvert\,\right.
$$

Not true (other then $g=0$)
But almost true

Ex. $\exists f: P=\bar{\Sigma}_{g} \xrightarrow{c^{\infty}} \mathbb{R}$
with exactly 3 ait. pros when $g \geqslant 1$
sphere $\longrightarrow 2 \longrightarrow \quad$ —. $\quad g=0 \cdot s^{2}$
(obvious)
Coustrect such a function D.
Hint: collapse all Zg sade es unto one "monkey saddle":
Ex.

Rub. This f is wot a height function But true fan a broad clans of functions $=$ house functions
\Rightarrow Key definitions $\stackrel{\square}{0}-p .8$

Rmk. Such a function f conuot

- Ex. be the couposition

$$
\sum_{g} \underset{\text { enbed }}{C} \mathbb{R}^{3} \xrightarrow{z} \mathbb{R}
$$

- But it con be

$$
\pi^{2} \underset{i m m}{\longrightarrow} \mathbb{R}^{3} \xrightarrow{z} \mathbb{R} \text {, but not } \sum_{g>1}
$$

Ref (Fron Elijak):
projectenclid.ong/enclid.ijm/1256050732
$=$ T. Banchoft, F. Takeus
"Height functions on suzfoces with three evitical points", Illinois. J. Mcth

$$
19(1975), 325
$$

§2 Basic Definitions - Morse functions
$f: P \underset{w}{p} c^{2} \mathbb{R} \quad$ and the strategy

$$
p \in \operatorname{Crit}(f)
$$

Def. The Hessian of f at p

$$
\begin{aligned}
d_{p}^{2} f: & T_{p} P \times T_{p} P
\end{aligned} \quad \mathbb{R} \text { directional } \quad \begin{aligned}
& \text { derivetives } \\
& \\
& (v, w) \longmapsto\left(L_{v} L_{\sim}^{\sim} f\right)(p)
\end{aligned}
$$

could be v
\tilde{v}, w ext of $v \& w$ to v.f. neon p.
$\approx \rightarrow$ Need to check: independent of $\widetilde{v} \sim$

Prop. a) well-defined \leftarrow ind of \tilde{v} \& \widetilde{w}
b) symmetric
c) In local coordinates: the ordinery

$$
d_{p}^{2} f(v, w)=\sum \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(p) v_{i} w_{j}
$$

where $v=\sum \sigma_{i} \frac{\partial}{\partial x_{i}}, w=\sum w_{i} \frac{\partial}{\partial x_{i}}$

$$
\begin{aligned}
& x=\left(x_{1}, \ldots, x_{n}\right) \leftarrow \text { local cord } \\
& \text { neon } p
\end{aligned}
$$

Rit. © Condition $p \in C_{r i t}$ is essential:
otherwise $d_{p}^{2} f$ is not well-defiwed

- Ex. If $(p) \neq 0 \Rightarrow \exists$ a coordingte system ween p st.

$$
f(x)=x_{1}
$$

In fact one ca melee $f(x)=x_{1}+Q(x)$
anythis hiriden
Pf
c) \Rightarrow a) $\& b)$
r The dumbest and simplest way to prove the prop
Proving e):

$$
\begin{aligned}
& L_{\tilde{w}} f=\sum_{j}^{\sum_{j} \underbrace{\tilde{w}_{j} \frac{\partial f}{\partial x} j} \quad \text { Aunctiars }} \begin{array}{r}
\text { of } x
\end{array} \\
& \left.L_{w} L_{\tilde{w}} f\right|_{p}=\sum_{i \cdot j} L_{\tilde{v}_{i}} \tilde{w}_{j} \left\lvert\, \underbrace{\frac{\partial f}{\partial x}(p)} \int \underbrace{j} \dot{E}_{p} f=0\right. \\
& +\sum_{i, j} \underbrace{\tilde{v}_{i}(p)}_{v_{i}} \underbrace{\tilde{w}_{j}(p)}_{w_{j}} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(p)
\end{aligned}
$$

Using more a dvoncee tools of calculus on manifolds:

Coordinabe-free pf of b):

$$
\begin{aligned}
L_{\tilde{v}} L_{\tilde{w}} f-L_{\tilde{w}} L_{\tilde{v}} f & =L_{[\tilde{w}, \tilde{w}]} f \\
& =d f([\tilde{w}, \tilde{w}]) \\
& =0 \text { (a) } p
\end{aligned}
$$

Again the coudition $d f_{p}=0$ is esential
Coordivote-free pf a):
Alvedy know thit $d_{p}^{2} f$ is sywuetric
Need to show $\tilde{\omega}(p)^{j}=0 \Rightarrow d_{p}^{2}-1(\tilde{v}, \tilde{\omega})=0$
But $d_{p}^{2} f(\tilde{w}, \bar{w})=L_{\pi}\left(L_{\tilde{w}} f\right)(p)=0$
Serends ouly on $\tilde{\omega}(p)=\tilde{\omega}=0$

Ex.

$$
P^{n} \subset \mathbb{R}^{n+1}
$$

$f=$ projection to some divection e.9. x_{n+1} - coordinate

the best quadratic approve motion of f
 The segue 4 $\underset{\mathbb{I}_{p}}{\operatorname{Rovm}_{p}}{\cdot T_{p} P T_{p} P}_{\rightarrow}^{P}$

$$
P=\operatorname{graph}(f)
$$

$\underbrace{\left(x_{1}, \ldots x_{2}\right)}_{\tilde{R}^{2}}<$ local cord on \mathbb{P}

Further definitions:

$$
p \in \operatorname{crit}(f)
$$

Deft) P is nor-desenenote if $d_{p}^{2} f$ is nan-degenerate
b) The Morse index (or just index) of p in the $\underbrace{\text { indes of } d_{p}^{2} f}$

$$
\begin{aligned}
& 0 \leqslant \operatorname{sind}_{p} f \leqslant n \\
& \text { din } P \quad \text { the \#of reg live } \\
& \text { squeres when } \\
& d_{p}^{2} f=x_{1}^{2}+\ldots x_{t}^{2}-\underbrace{x_{k-1}^{2} \ldots x_{n}^{2}}_{\text {index }}
\end{aligned}
$$

c) f is Morse if all $\operatorname{Cnt}(f)$ are non-dgeve rote
Notation: $\operatorname{Crit}_{k}(f)=$ crit pb of ides k

$$
P \subset \mathbb{R}^{3}
$$

Ex A Monkey saddle is degenevab!

Goal
Relate the critical pos of a Mouse function to the topology of P.
In particular prove:
Mouse Inequalities

$$
\left|\operatorname{Crit}_{k}(f)\right| \geqslant \operatorname{dim} H_{k}(P)
$$

stroteqy:
Do this inductively moving
min to maxi
and looking at how the topology $\{f \leqslant c$? changes with c

Relevent questions:

- How do we know morse functions exist on P?
- If so how common ave they?
§3 Regular value intervals
Lecture 3
$01 / 07$
Key pt: nothing happens to $\{f \leqslant c\}$ as long as e reunains regular?

To be more precise:

- $f: P \xrightarrow{c^{2}} \mathbb{R}$
compact or f is proper
- $[a, b]<\mathbb{R}$ contains no critical

Prop $\{f \leq a\}$ is dittes to $\{f \leq b\}$

Rake only matters that $f^{-1}([a, b])$ is comport.

Pf: Use (anti) gradient flow

- key tool in more theory
- Fix a Riemarnian metric on P:

$$
\langle,\rangle: T_{P} P \bar{x}_{P} P \longrightarrow \mathbb{R}
$$

symmetric 8 pos. def

- $\nabla f:\langle\nabla f, \cdot\rangle=d f$

If $\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{4}}$ is oithonornol basis at p :

$$
\begin{align*}
& \text { metur }=\sum d x_{i}^{2} \\
& \nabla f \text { is } c^{\prime} \Leftarrow f \text { is } c^{2} \tag{14}
\end{align*}
$$

$$
\begin{aligned}
& \nabla f(p)=\sum \frac{\partial f}{\partial x_{i}} L_{p} \frac{\partial}{\partial x_{i}} \quad \text { or } R^{2} \\
& L_{\nabla f} f=d f(\nabla f)=\langle\nabla f, \nabla f\rangle=\|\nabla f\|^{2} \\
& x=-\frac{\nabla f}{\|\nabla f\|^{2}} L_{x} f=-1 \\
& \varphi^{t}=\text { the flow of } x, \text { local existence } \in \underbrace{\nabla f c^{\prime}}_{\pi} \\
& \frac{d}{d t} f\left(\varphi^{t}(x)\right)=L_{x} f(x)=-1
\end{aligned}
$$

f decreases along the flow lines of X with snit speed

Technical pts:

- compactness $\Rightarrow \varphi^{t}$ is detived for all t
- $[a, b]$ reqular $\Rightarrow \nabla f \neq 0$ on $\int^{-1}([a, b])$

Rok what to change when only $f^{-1}([a, b])$
-Ex. is compact:

- $f^{-1}([a, b]) \operatorname{conpoot} \Rightarrow f^{-1}([a-\varepsilon, b])$ confect

- Replace X by g.X:
$g: P \rightarrow \mathbb{R} \quad g=h \circ f$ ent-of function.
§4. Morse Lemma
Answers the question of whet happens at critical pts But actually more significant

Prop (Mouse Lemma) $\quad f \in C^{3}$
$p \in C_{r i t}(f)$ is non-des \Rightarrow

- a cooed system s.t.

$$
\begin{aligned}
f(x) & =f(p)+\frac{1}{2}\left(-x_{1}^{2} \ldots-x_{k}^{2}+x_{k+1}^{2}+\ldots+x_{n}^{2}\right) \\
& =f(p)+\frac{1}{2} d_{p}^{2} f ; \quad k=i k d_{p} f
\end{aligned}
$$

In other words, by a local change of coordinates near p one con eliminate higher order terms in tho Taylor exp of f
Rok.: Going from $d_{p}^{2} f$ to $-x_{1}^{2} \ldots-x_{k}^{2}+x_{k+1}^{2}+\ldots$ is simply diagovalizetion of $d_{p}^{2} f$

- Linear algebra

Or to rephrase: the mouse index is the only local invariant of a nou-deg critical pt - two crit pts with the same same index are locally differ
morse lemma gives a local picture of whet f looks like near a critical pt of index b.

To be used later
Examples

1) $n=2, k=0: f(x)=x_{1}^{2}+x_{2}^{2}$

2) $n=2 \quad k=1 \quad f(x)=x_{1}^{2}-x_{2}^{2} \quad$ saddle

$$
f<-\varepsilon
$$

3) $n=3, k=2 \quad f(x)=x_{1}^{2}-x_{2}^{2}-x_{3}^{2}$

Preliminaries - of independent interest
Lemma (Hadamard)

$$
\begin{gathered}
f: \mathbb{R}^{n} \xrightarrow{c^{r}} \mathbb{R}, \quad f(0)=0 \\
\Rightarrow \exists g_{i}: \mathbb{R}^{n} \xrightarrow{c^{r-1}} \mathbb{R} \quad g_{i}(0)=\frac{\partial f}{\partial x_{i}}(0) \\
f(x)=\sum g_{i}(x) x_{i}
\end{gathered}
$$

(neon 0)
Rok. con replace \mathbb{R}^{4} by a stan-sbappod
Atlempls - what does not quite work

$$
n=1 \quad f(x)=x \cdot g(x), g \in C^{\bar{r}-1}
$$

1) f is real analytic

$$
\begin{aligned}
f(x) & =\underbrace{a_{0}}_{\vdots}+a_{1} x+a_{2} x^{2}+\ldots \\
& =x \underbrace{\left(a_{1}+a_{2} x+\ldots\right)}_{g(x) \text { converging }}=x g(x)
\end{aligned}
$$

But in geneval the Taylor exp

- need not converge
(Any power series is the T. exp of some function $-E x$)
- if it converges, need not cons to f.
E.g. It con be identically zero

2) Capitalizing on the assumption that $n=1$ set

$$
g(x)= \begin{cases}f^{\prime}(x) / x & x \neq 0 \\ f^{\prime}(0) & x=0\end{cases}
$$

Need to show the g is C^{r-1} Not entirely straight for ward Ex. Prove $f c^{\prime} \Rightarrow g c^{0}$

$$
f c^{2} \Rightarrow g c^{\prime}
$$

Rok. The condition that

$$
f \text { is } c^{l}
$$

is essential to get $g c^{0}$:
E.g.

$$
\begin{aligned}
& f(x)=x^{1 / 3} \quad \text { and defined at } 0 \\
& g(x)=\frac{x^{4 / 3}}{x}=\frac{1}{x^{2 / 3}} \leftarrow \operatorname{not}_{\text {at }} 0 \\
& g(0)=\infty
\end{aligned}
$$

Pf

$$
n=1 \quad f(x)=\int_{0}^{\text {FTC }} \frac{d}{d t} f(t x) d t=f(x)-f(0)
$$

$\underset{\operatorname{chain}}{\operatorname{cha}}=\int_{0}^{1} x f^{l}(t x) d t$

$$
\begin{aligned}
& =x \underbrace{\int_{0}^{1} f^{\prime}(t x) d t}_{g(x) c^{r-1}}=x g(x) \\
& g(0)=f^{\prime}(0) \\
& n \geqslant 1 \\
& f(x)=\int_{0}^{1} \frac{d}{d t} f(t x) d t \\
& 0 \uparrow v=\int_{0}^{1} \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(t x) \underbrace{\frac{d\left(x_{i} t\right)}{d t}}_{x_{i}} d t \\
& =\int_{0}^{1} \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(t x) x_{i} d t \\
& =\sum_{i=1}^{n} x_{i} \underbrace{\int_{0}^{1} \frac{\partial f}{\partial x_{i}}(t x) d t}_{g_{i}(x) c^{r-1}} \\
& =\sum_{i} x_{i} g_{i}(x) \quad \begin{array}{ll}
\text { Again at } 0: \\
g_{i}^{\prime}(0)=\frac{\partial L}{\partial x_{i}}(0)
\end{array}
\end{aligned}
$$

Con Assume $f: \mathbb{R}^{n} \xrightarrow{C^{r}} \mathbb{R}, r \geqslant 2$

$$
\nabla f(0)=0
$$

$$
\Rightarrow h_{i j}: \mathbb{R}^{n} \xrightarrow{c^{r-2}} \mathbb{R} \quad \text { st. }
$$

$$
\text { - } f(x)=f(0)+\sum_{i, j} h_{i j}(x) x_{i} x_{j}
$$

$$
\text { - } h_{i j}(0)=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(0)
$$

Pf. Apply Madamard's Lemma twice
Rum $\quad h_{i j} \stackrel{?}{=} h_{j i} \leftarrow$ bet we dowit

Pf of the Movse Lemma
The question is local: can work in \mathbb{R}^{n}

$$
p=0, \quad f(0)=0
$$

$f:\left(\mathbb{R}_{A}^{2}, 0\right) \longrightarrow \mathbb{R}$ In reality interabtep in gevnis

$$
\begin{aligned}
& \text { nbd of } 0 \subset \mathbb{R}^{n} \\
& f(x)=\underbrace{Q(x)+R(x) \leftarrow \text { the Hemainder }}_{d_{0}^{2} f(x)}+2 \text { thessin }
\end{aligned}
$$

Want a diffeo

$$
\begin{gathered}
\varphi:(v ; 0) \rightarrow(v, 0) \\
n \cdot d s \text { of } 0 \\
f: \varphi=Q
\end{gathered}
$$

Homotoply method: ivpportant
(Moser)y

- ref to syupl. geom clars
(0.g. The pf of

$$
\begin{aligned}
& \text { Dauborx thim, } \\
& \text { moser's thin }
\end{aligned}
$$ moser's tha,

But the pf of Mouse Leveme is a bit horder

Idea: 1) set $f_{t}=Q+t R$

$$
\begin{aligned}
& =(1-t) Q+t \cdot f \\
& t \in[0,1]
\end{aligned}
$$

Looking for a family of diffeo's $\varphi_{t}\left(\begin{array}{l}\text { nea } 0\end{array}\right) \quad \varphi_{0}=i d$

$$
\text { s.t. }(*) f_{t} \cdot \varphi_{t}=Q \quad \begin{aligned}
& \text { seemingly a } \\
& \text { wordiflupt } \\
& \text { quentidn }
\end{aligned}
$$

2) Iustead of looking for φ_{t} look for a genevolicy time-dependent v..

$$
\frac{v_{t}}{d t} \varphi^{t}(x)=v_{t}\left(\varphi^{t}(x)\right)
$$

Differentioting ($*$) in t

$$
\begin{align*}
& (*) \underset{F T C}{\Leftrightarrow} \frac{d}{d t} f_{t} \cdot \varphi_{t}=0 \\
& \Leftrightarrow \frac{d f_{t}}{d t}\left(\varphi_{t}(x)\right)+L_{v_{t}} f_{t}\left(\varphi_{t}(x)\right)=0 \\
& \Leftrightarrow \frac{d f_{t}}{d t}+L_{\sigma_{t}} f_{t}=0 \tag{x+x}\\
& \text { Appli } \varphi_{t}^{-1} \\
& \text { ov just } y=y^{t}(x) \quad \text { ptwise }
\end{align*}
$$ ov just $y=\varphi^{t}(x)$

Waut: Solve $(* *)$ for $\sigma_{t}=\left(v_{1}, \ldots, v_{n}\right) \overrightarrow{v_{t}}$ Notation $f(x)=Q(x)+R(x)$ suppress t

$$
f(x)=\sum x_{i} x_{j} \underbrace{g_{u j}(x)},\binom{=0}{\text { ato }}
$$

$$
=\underbrace{\sum x_{i} x_{j} a_{i j}}_{Q(x)}+\underbrace{\sum x_{i} x_{j} R_{i j}(x)}_{R(x)}
$$

one eq $f_{t}(x)=Q(x)+t R(x)$
under-dederminued

$$
=\sum x_{i} x_{j} a_{i j}+t \sum x_{i} x_{j} R_{i j}
$$

probobls
$(* *) \Leftrightarrow$ equal

$$
-\sum_{i, j} x_{i} x_{j} R_{i j}(x)=\sum_{i, j} x_{i} v_{j}\left(2 a_{i j}+t\left(R_{i j}+R_{i i}\right)+t_{\text {...0 }}\right)
$$

$$
-\sum_{i, j} x_{i} x_{j} R_{i j}(x)=\sum_{i, j} x_{i} v_{j}\left(2 a_{i j}+2 t \hat{R_{i j}}\right)
$$

$\underset{\sim}{\leftarrow} \underset{r_{i}(x)}{\left\{\sum_{j}^{-\sum_{j} x_{j} R_{i j}(x)}\right.}=\underbrace{}_{\begin{array}{c}\text { System of liveor } \\ \text { equatious at }(x, t)\end{array}}$ equations at (x, t)

$$
\begin{equation*}
i=1, \ldots, n \tag{24}
\end{equation*}
$$

$$
\begin{aligned}
& 2(a_{i j}+\underbrace{t \hat{R}_{i j}(x)}_{=0 \text { ato }}) \leftarrow \operatorname{mabric} A_{t}(x) \\
& \vec{r}=A_{t}^{\vec{v}_{t}} \quad \underbrace{A_{t}(0)=2 \text { Hessian }}_{\text {non-deg }} \\
& \text { nou-dy for } t \in[\rho, 1] \\
& \text { and all } x \text { neer } 0
\end{aligned}
$$

Set $\vec{v}_{t}(x)=A_{t}^{-1}(x) \vec{r}_{r}(x)$
Nuance (important): need to neche sure
$\Rightarrow\left\{\begin{array}{l}\cdot \varphi^{t} \text { is defined for } t \in[0,1] \\ 0 \varphi^{t}(0)=0\end{array}\right.$

$$
\left\{\cdot \varphi^{t}(0)=0\right.
$$

(Existend \& uniqueners is locel in t)

$$
\begin{aligned}
v_{t}(0)=0 \Leftarrow \vec{r}(0) & =0 \\
r_{i}(x) & =\sum x_{j} R_{i j}(x) \\
& =0 \text { at } 0
\end{aligned}
$$

Reason:. The existeny fime is lower semicontinuom

$$
\text { - } \infty \text { at } x=0
$$

Pictorial Pf of Lower Semi-continuity

Main Ht: $\varphi^{t}(y)$ exists and is close to $\varphi^{t}(x)$ as long as $t \in[0, T]$ if y is close to x.

Digressou - Broader Eonbext - Lectone 3
Nomal Forms \& Singularities of Functions
\rightarrow Cousider a class of objects:
(a) - matrices ($=$ linear trous f)
(b) - symmetric netr 1 = quade formes
(c) - functions neor a pt $p=0 \in \mathbb{R}^{2}$
\Rightarrow With an equiv relction coming tran a gp action="coord ehanges
(a) \cdot
$A \longleftrightarrow B A B^{-1}$
(b) • $\quad A \longleftrightarrow B A B^{\top}$
(c) $\quad t<\sim$ fo $\varphi \quad \varphi=$ ditteo neer ρ

$$
\varphi(p)=p
$$

Normal form = a simple form rouphly all (or some) objets speaving can be brought to
E.g (a) - Jordan normal form
(b) - diagokal motrix with t on 0 on diagonal
whot about (c)?
Is ther a noverd forn fon fuuchious near p ? Not really, but YES under additiouel conditious

- Fact: $d f \neq 0 \quad p=0$

$$
\Leftrightarrow \exists\left(x_{1}^{p}, \ldots, x_{n}\right) \text { st } f(x)=x_{1}+c \text { neo } c
$$

This is Ex on $p 9$
In othr wards: all fuuchoes with $d f_{p} \neq 0$ are equivalect to ecch - Her (up to a coust)

- Next step: Focus on funchas with

$$
\left.d\right|_{p}=0
$$

Morse Lenma $=$ Norwal forw provided tht $d_{p}^{2} f$ is uou-deg:
the anly invoriont is viouse index

- Ove can go fuzthar and study whot loppers shen d_{p}^{2} f degenerotes
E.g. For hol functions of one-variable Ex the novrual foum is $z^{k}+c$ For smooth functions the situation quickly becombes coupliooted subject: "Singulavities of suroot funcliony"

Ex. $f: \mathbb{R} \xrightarrow{c^{\infty}} \mathbb{R}$ near 0

$$
\begin{aligned}
& f(0)=\ldots=f^{(k-1)}(0)=0 \\
& f^{(k)}(0) \neq 0
\end{aligned}
$$

near o
$\Rightarrow \exists$ a change of variable $\varphi:(\mathbb{R}, 0) P$

$$
(f \circ \varphi)(y)= \pm y^{k}
$$

Hint: Use Madamardis Lemme
The situation becomes much more involved when $n>1$

See, l_{1}, Arnold-Varchenko-Gusein-Zode
Prof.

$$
\left.\begin{array}{rl}
\text { Hadamard } \Rightarrow f(x) & = \pm x^{k} \cdot g(x)
\end{array}\right) \quad g(0)>0
$$

