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Motivation

Motivation: Floer’s proof of an Arnold-type Conjecture:

Theorem (Floer)

Let (M,ω) be a closed symplectic manifold, L a compact Lagrangian
submanifold of M , and ψ a Hamiltonian diffeomorphism of (M,ω).
Assume that the symplectic area of any topological disc in M with
boundary in L vanishes. Assume moreover that ψ(L) and L intersect
transversely. Then the number of intersection points of L and ψ(L)
satisfies the lower bound

#(ψ(L) ∩ L) ≥
∑
i

dimHi(L;Z/2).
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Floer’s Approach

Idea: Given a tranversely intersecting pair of Lagrangian
submanifolds L0, L1, construct a chain complex CF (L0, L1) freely
generated by the intersection points ∈ L0 ∩ L1, satisfying:

∂2 = 0, so that the (Lagrangian) Floer (co)homology

HF (L0, L1) := ker ∂/ im ∂

is well-defined

if L1 and L′1 are Hamiltonian isotopic, then

HF (L0, L1) ' HF (L0, L
′
1)

if L1 is Hamiltonian isotopic to L0, then (with suitable
coefficients)

HF (L0, L1) ' H∗(L0)
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Smooth Trajectories Between Two Lagrangians

Let L0, L1 be compact Lagrangian submanifolds of symplectic
manifold (M,ω) that intersect transversely (and hence at finitely
many points).

The space of smooth trajectories from L0 to L1, endowed with
the C∞-topology:

P(L0, L1) := {γ : [0, 1]→M | γ smooth, γ(0) ∈ L0, γ(1) ∈ L1}

constant paths ∈ P(L0, L1) ←→ intersection points ∈ L0 ∩ L1

For a fixed γ̂ ∈ P(L0, L1), let P(γ̂) denote the connected
component of P(L0, L1) containing γ̂.
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Action Functional

The universal cover of P(γ̂) is

P̃(γ̂) = {(γ, [Γ]) : γ ∈ P(γ̂),Γ : smooth homotopy from γ̂ to γ}

(i.e. Γ : [0, 1]× [0, 1]→M smooth with Γ(s, ·) ∈ P(γ̂) for all
s ∈ [0, 1], Γ(0, ·) = γ̂, and Γ(1, ·) = γ.)

The action functional A is defined on P̃(γ̂) by

A(γ, [Γ]) := −
∫

Γ

ω

= −
∫

[0,1]×[0,1]

Γ∗ω

= −
∫ 1

0

∫ 1

0

ω

(
∂Γ

∂s
,
∂Γ

∂t

)
ds ∧ dt
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Action Functional

WARNING: Actually, I lied: A is not well-defined!

We impose the following assumption (which will also avoid other
complications later):

Assume that for each i = 0, 1,

[ω] · π2(M,Li) = 0,

i.e. any topological disk in M with boundary in Li has vanishing
symplectic area.

Note that, in particular, this implies that M is symplectically
aspherical, i.e.

[ω] · π2(M) = 0.
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Action Functional

To see that A is well-defined: Let γ ∈ P̃(γ̂) and Γ, Γ′ be homotopic
smooth homotopies from γ̂ to γ.

We have the cylinder Γ#Γ′ : S1 × [0, 1]→M , where Γ#Γ′(s, i)
is a loop in Li, for i = 0, 1.

Γ,Γ′ are homotopic ⇒ Γ(s, i),Γ′(s, i) are homotopic in Li ⇒
there exist topological disks whose boundaries are
Γ#Γ′(s, i) ⊂ Li
Li Lagrangian ⇒ these disks have symplectic area 0

symplectic asphericity⇒ symplectic area of the cylinder is also 0:

0 =

∫
Γ#Γ′

ω =

∫
Γ

ω −
∫

Γ′
ω
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Riemannian Metric

To do Morse theory, we need a gradient flow, and hence we need a

Riemannian metric on P̃(γ̂).

Recall: Let J ∈ End(TM) be an almost complex structure on
(M,ω).

J is ω-compatible if

ω(v, Jv) > 0, ∀v ∈ TxM, ∀x ∈M,

and
ω(J ·, J ·) = ω(·, ·).

If J is ω-compatible, then it induces a Riemannian metric on M :

gJ(·, ·) := ω(·, J ·)

The space J (M,ω) of ω-compatible almost complex structures
on M is non-empty and contractible.
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Riemannian Metric

Now, let (γ, [Γ]) ∈ P̃(γ̂).

The tangent space to P̃(γ̂) at (γ, [Γ]) is the space of vector
fields ξ along γ with initial and final vectors in the tangent
spaces to L0 and L1, respectively, i.e.

T(γ,[Γ])P̃(γ̂) = {ξ ∈ Γ(γ∗(TM)) : ξ(t) ∈ Tγ(t)M , ξ(i) ∈ Tγ(i)Li}

Choose a smooth family J = {Jt}0≤t≤1 ⊂ J (M,ω), which
gives rise to a smooth family of Riemannian metrics {gt}0≤t≤1.

We define a Riemannian metric on P̃(γ̂) as follows: If

ξ, η ∈ T(γ,[Γ])P̃(γ̂), put

〈ξ, η〉 :=

∫ 1

0

gt(ξ(t), η(t))dt.
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Gradient

We are now able to make sense of the gradient flow. Let

(γ, [Γ]) ∈ P̃(γ̂) and ξ ∈ T(γ,[Γ])P̃(γ̂). Let {γη(t)}1−ε0≤η≤1+ε0 be a
smooth homotopy such that γ1 = γ and

∂

∂η

∣∣∣∣
η=1

γη(t) = ξ(t),

and let Γ : [0, 1 + ε0]× [0, 1]→M be a smooth homotopy for which

Γ(0, t) = γ̂(t)

Γ(1, t) = γ(t)

Γ(η, t) = γη(t), ∀η ∈ [1− ε0, 1 + ε0].

For each η, we have the homotopy Γη : [0, 1]× [0, 1]→M from γ̂ to
γη defined by

Γη(s, t) = Γ(ηs, t)
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Gradient

dA(γ,[Γ])(ξ) =
∂

∂η

∣∣∣∣
η=1

A(γη, [Γη])

= − ∂

∂η

∣∣∣∣
η=1

∫
Γη

ω

= − ∂

∂η

∣∣∣∣
η=1

∫ 1

0

∫ 1

0

ω

(
∂Γη
∂s

,
∂Γη
∂t

)
ds ∧ dt

= − ∂

∂η

∣∣∣∣
η=1

∫ 1

0

∫ η

0

ω

(
∂Γ

∂s̃
,
∂Γ

∂t

)
ds̃ ∧ dt

= −
∫ 1

0

ω

(
ξ(t),

∂γ

∂t

)
dt

=

∫ 1

0

ω

(
∂γ

∂t
, ξ(t)

)
dt
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Gradient

With the family of ω-compatible almost complex structures Jt, we
then have

dA(γ,[Γ])(ξ) =

∫ 1

0

ω

(
Jt
∂γ

∂t
, Jtξ(t)

)
dt

=

∫ 1

0

gt

(
Jt
∂γ

∂t
, ξ(t)

)
dt

=

〈
Jt
∂γ

∂t
, ξ

〉

That is, with respect to the Riemannian metric we defined,

gradA(γ, [Γ]) = Jt
∂γ

∂t
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Critical Points

gradA(γ, [Γ]) = Jt
∂γ

∂t

Since Jt is an automorphism of TM for each t,

gradA(γ, [Γ]) = 0 if and only if
∂γ

∂t
≡ 0, i.e. γ ∈ P(L0, L1) is a

constant trajectory.

That is:

The critical points of A are the intersection points ∈ L0 ∩ L1.
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Gradient Flowlines

gradA(γ, [Γ]) = Jt
∂γ

∂t

If p, q ∈ L0 ∩ L1, a flowline of − gradA from p to q is a smooth

function ũ : R→ P̃(γ̂) satisfying

dũ

ds
= − gradA, lim

s→−∞
ũ(s) = p, and lim

s→+∞
ũ(s) = q.

Equivalently, we have a strip u : R× [0, 1]→M satisfying:

∂u

∂s
+ Jt

∂u

∂t
= 0,

lim
s→−∞

u(s, t) = p,

lim
s→+∞

u(s, t) = q.
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J-Holomorphic Strips

∂u

∂s
+ Jt

∂u

∂t
= 0,

lim
s→−∞

u(s, t) = p,

lim
s→+∞

u(s, t) = q.

Note that the first equation above is the Cauchy-Riemann
equation ∂J(u) = 0 for u, with respect to the family J = {Jt}
of almost complex structures.

A map u satisfying ∂J(u) = 0 is called a J-holomorphic strip in
(M,ω). That is, a connecting gradient flowline is a
J-holomorphic strip.

Riemann Mapping Theorem ⇒ R× [0, 1] is biholomorphic to
D2 − {±1}, and hence a J-holomorphic strip can also be
regarded as a closed Whitney disk with two points removed
(corresponding to the two critical points p, q)



Lagrangian Floer
Homology

John Gabriel P.
Pelias

Introduction

Action Functional

Holomorphic
Strips

The Floer
Complex

Applications

Finite Energy

If M is not compact, we need to impose an extra condition: The
J-holomorphic strips u : R× [0, 1]→M must have finite
energy, i.e.

E(u) :=

∫
u

ω =

∫ 1

0

∫ 1

0

∣∣∣∣∂u∂s
∣∣∣∣2 dsdt <∞.

If M is compact, the limiting conditions

lim
s→−∞

u(s, t) = p, lim
s→+∞

u(s, t) = q

turn out to be equivalent to the finite energy condition.
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Moduli Space of J-Holomorphic Strips

M̂(p, q; J) denotes the space of all smooth J-holomorphic strips
u : R× [0, 1]→M for which lims→−∞ u(s, t) = p,
lims→+∞ u(s, t) = q, u(s, ·) ∈ P(L0, L1), and E(u) <∞.

M(p, q; J) denotes the quotient of M̂(p, q; J) by the action of
R by reparametrization, i.e. a ∈ R acts by

u 7→ ua(s, t) := u(s− a, t)

If β ∈ π2(M,L0 ∪ L1), M̂(p, q;β, J) denotes the space of all

smooth J-holomorphic strips u ∈ M̂(p, q; J) with [u] = β.

M(p, q;β, J) denotes the quotient of M̂(p, q;β, J) by the usual
action of R by reparametrization.
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Maslov Index: One Lagrangian

To address the dimension of the moduli space of holomorphic strips,
we look at the Maslov index. For the moment, consider a single
Lagrangian submanifold L of M .

If u : (D2, ∂D2)→ (M2n, L) is smooth, there is a trivial
symplectic fibration u∗(TM)→ D2 (since D2 is contractible).

Restricting to ∂D2 = S1, we have a loop of Lagrangian
subspaces of (R2n, ω0).

That is, u induces a loop in the Lagrangian Grassmannian of
R

2n, i.e. a map
uL : S1 → Λ(R2n)

The Maslov index of u is the winding number

µL(u) := (uL)∗(1) ∈ π1(Λ(R2n)) ' Z

The Maslov index only depends on the homotopy class, i.e. we
have a well-defined homomorphism µL : π2(M,L)→ Z.
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Maslov Index: Two Lagrangians

Now, back to the two Lagrangian submanifolds L0 and L1 of M :

If u : R× [0, 1]→M is a smooth J-holomorphic strip in

M̂(p, q; J), then u∗(TM) is again a trivial symplectic fibration
since R× [0, 1] is contractible.

Restricting to both L0 and L1, we have two paths
`0 := (u|

R×0)∗(TL0) and `1 := (u|
R×1)∗(TL1) of Lagrangian

subspaces, one connecting TpL0 to TqL0 and the other
connecting TpL1 to TqL1.

In general, for two paths `0, `1 : [0, 1]→ Λ(R2n) of Lagrangian
subspaces such that `0(i) and `1(i) are transverse (i = 0, 1), the
Maslov index of `1 relative to `0 is the (signed) count of
instances t at which `0(t) and `1(t) are NOT tranverse to each
other.

The index of the holomorphic strip u is the above Maslov index.
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Maslov Index: Two Lagrangians

Example: In Cn, consider the paths of Lagrangian subspaces

`0(t) = R
n,

`1(t) = (eiθ1(t)R)× · · · × (eiθn(t)R)

where each θi(t) sweeps through 0 and is within π.

The Maslov index of `1 relative to `0 is n.
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Maslov Index: Two Lagrangians

Example: In R2, consider the strip u : R× [0, 1]→ R2 enclosed by

L0 = x-axis,

L1 = {(x, x2 − x) : x ∈ R}.

The index of the strip u is ind([u]) = 1.
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The Moduli Space as a Manifold

Theorem

Let L0, L1 be compact Lagrangian submanifolds of a closed
symplectic manifold (M,ω). If L0 and L1 intersect transversely, then
there exists a dense subset Jreg(L0, L1) ⊂ C∞([0, 1],J (M,ω)) such
that for J = {Jt}0≤t≤1 ∈ Jreg(L0, L1), p and q in L0 ∩ L1, and

β ∈ π2(M,L0 ∪ L1), the moduli space M̂(p, q;β, J) is a smooth

manifold. Moreover, M̂(p, q;β, J) has dimension ind(β).

In particular, if ind(β) = 1, then M̂(p, q;β, J) has dimension 1, and
hence M(p, q;β, J) has dimension 0.
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The Floer Complex

The Floer complex CF (L0, L1) is the free Λ-module generated
by the intersection points ∈ L0 ∩ L1:

CF (L0, L1) =
⊕

p∈L0∩L1

Λ · p.

compact and tranverse Lagrangians L0, L1 ⇒ finitely many
generators
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Transversality

What if L0 and L1 are not transverse to each other? In particular,
what if L0 = L1?

Introduce an inhomogeneous Hamiltonian perturbation to the
Cauchy-Riemann equation:

∂u

∂s
+ Jt(u)

(
∂u

∂t
−Xt(u)

)
= 0,

where Xt is the Hamiltonian vector field associated to a
time-dependent Hamiltonian Ht : M → R.

Strips now converge (as s→ ±∞) to trajectories of the flow of
Xt starting on L0 and ending on L1, and hence the generators
of CF (L0, L1) are now flowlines γ : [0, 1]→M ,
γ̇(t) = Xt(γ(t)) such that γ(i) ∈ Li.
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Novikov Coefficients

To define the Floer differential, we would like to work with Novikov
coefficients:

The Novikov ring over a field K is

Λ0 =

{ ∞∑
i=0

aiT
λi : ai ∈ K, λi ∈ R≥0, lim

i→∞
λi = +∞

}

The Novikov field Λ is the field of fractions of Λ0, i.e.

Λ =

{ ∞∑
i=0

aiT
λi : ai ∈ K, λi ∈ R, lim

i→∞
λi = +∞

}

The point: There can be only at most finitely many i for which
λi < 0 and ai 6= 0.
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The Floer Differential

The Floer differential ∂ : CF (L0, L1)→ CF (L0, L1) is the
Λ-linear map defined by

∂(p) =
∑

q∈L0∩L1,ind([u])=1

(#M(p, q; [u], J))Tω([u])q,

where #M(p, q; [u], J) ∈ Z (or Z/2) is the signed (or unsigned)
count of points in the moduli space of J-holomorphic strips from

p to q in the class [u], and ω([u]) =

∫
u∗ω is the symplectic

area of u.

In general, this sum can be infinite. But Gromov’s Compactness
Theorem ⇒ given any energy bound E0, there are only finitely
many [u] ∈ π2(M,L0 ∪ L1) with ω([u]) ≤ E0 for which
M(p, q; [u], J) 6= ∅.
Thus, with Novikov coefficients, the sum is well-defined.



Lagrangian Floer
Homology

John Gabriel P.
Pelias

Introduction

Action Functional

Holomorphic
Strips

The Floer
Complex

Applications

The Floer Differential

In general, we don’t always have ∂2 = 0.

Floer proved that ∂2 = 0 for K = Z/2, and under our
assumption π2(M,Li) = 0 for i = 0, 1.

One can do away with Novikov coefficients in certain cases, such
as when one has exact Lagrangian submanifolds in an exact
symplectic manifold.
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Compactness

Another issue in showing ∂2 = 0: compactness of the moduli space

Gromov’s Compactness Theorem ⇒ any sequence of
J-holomorphic curves with uniformly bounded energy admits a
subsequence which uniformly converges, up to
reparametrization, to a nodal tree of J-holomorphic curves.

unbounded derivatives, thus leading to energy blowing up in the
limit, result in bubbling phenomena
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Compactness

Three possible limiting behaviors:

strip breaking: when energy concentrates at either end
s→ ±∞, i.e. p, q

disk bubbling: when energy concentrates at a point on the
boundary of the strip

sphere bubbling: when energy concentrates at an interior point
of the strip
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Compactness

Strip breaking corresponds to broken trajectories in ordinary
Morse theory.

As in ordinary Morse theory, if the only limiting behavior is strip
breaking, one can show that ∂2 = 0.

The assumption [ω] · π2(M,Li) = 0 ensures that disk and sphere
bubbles never occur.

Another way to avoid disk and sphere bubbles: If one can
guarantee that such bubbles have index > 2

Still another way: If ambient and Lagrangian submanifolds are
exact, energy is constant on a fixed homotopy class [u], and so
no disk nor sphere bubbling ocurs.
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∂2 = 0

Sketch of proof that ∂2 = 0, assuming we exclude disk and sphere
bubbling: Fix Lagrangians L0, L1, a generic almost complex structure
J , and a Hamiltonian perturbation H (to ensure transversality).

Given p, q ∈ L0 ∩ L1 and [u] ∈ π2(M,L0 ∪ L1) with
ind([u]) = 2, we have dimM(p, q; [u], J) = 1

Gromov compacness, no disk nor sphere bubbles ⇒ the moduli
space can be compactified to the space M(p, q; [u], J) of broken
strips

M(p, q; [u], J)↔M(p, r; [u′], J)×M(r, q; [u′′], J), where r is
any generator of the Floer complex and [u] = [u′] + [u′′]

index additivity ⇒ ind[u′] + ind[u′′] = 2

tranversality ⇒ non-constant strips must have ind ≥ 1 ⇒ strips
can only break into two components
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∂2 = 0

Gluing Theorem ⇒ every broken strip is locally the limit of a
unique family of index 2 strips, and M(p, q; [u], J) is a
1-manifold with boundary

∂M(p, q; [u], J) =
∐

(M(p, r; [u′], J)×M(r, q; [u′′], J))

taken over all r ∈ L0 ∩ L1 and [u] = [u′] + [u′′] with
ind([u′]) = ind([u′′]) = 1

Choice of orientations and spin structures on L0 and L1 equips
moduli spaces with natural orientations
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∂2 = 0

Oriented number of boundary points of the compact 1-manifold
M(p, q; [u], J) is 0 ⇒∑

(#M(p, r; [u′], J)) (#M(r, q; [u′′], J))Tω([u]) = 0

where the sum is taken over all r ∈ L0 ∩L1 and [u] = [u′] + [u′′]
with ind([u′]) = ind([u′′]) = 1

Noting that ω([u]) = ω([u′]) + ω([u′′]), summing over all
possible [u] gives us that the coefficient of q in ∂2(p) is 0.
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Problem with Disk or Sphere Bubbling

Why we should worry about disk bubbling:

Consider M = T ∗(S1) ∼= S1 ×R, L0 a simple closed curve going
around M once, and L1 a homotopically trivial loop intersecting L0

transversely at two points p, q

CF (L0, L1) = Λp⊕ Λq

If u is the upper strip and v is the lower strip, then

∂(p) = ±Tω([u]) and ∂(q) = ±Tω([v])p.

⇒ ∂2(p) 6= 0
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Lagrangian Floer Homology

The Lagrangian Floer homology of (L0, L1) is the homology of
the Floer complex:

HF (L0, L1) :=
ker ∂

im ∂

Theorem

Assume that [ω] · π2(M,Li) = 0 for i = 0, 1. Moreover, when
charK 6= 2, assume that L0, L1 are oriented and equipped with spin
structures. Then, the Floer differential ∂ is well-defined, satisfies
∂2 = 0, and the Floer cohomology

HF (L0, L1) := H∗(CF (L0, L1), ∂)

is, up to isomorphism, independent of the chosen almost complex
structure J and invariant under Hamiltonian isotopies of L0 or L1.
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Having shown ∂2 = 0, one still has to show that HF (L0, L1) is
independent of J and is invariant under Hamiltonian isotopies of
L0 and L1.

Once the invariance has been established, we can now define, for
a single Lagrangian submanifold

HF (L,L) := HF (L,ψ(L)),

where ψ is any Hamiltonian diffeomorphism such that L and
ψ(L) intersect transversely.
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Proposition

Let L be a compact Lagrangian submanifold of (M,ω). If
[ω] · π2(M,L) = 0, then

HF ∗(L,L) ' H∗(L;Z/2)⊗Z/2 Λ.

Thus, if ψ ∈ Ham(M,ω),

#(L ∩ ψ(L)) ≥ dimΛHF (L,ψ(L))

= dimΛHF (L,L)

= dimΛ Λ⊗Z/2 H
∗(L;Z/2)

=
∑
j

rankHj(L;Z/2)
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Arnold’s Conjecture

Finally, we have Floer’s result, a version of the Arnold conjecture,
proved using Lagrangian Floer homology:

Theorem

Let L be a compact Lagrangian submanifold of a closed symplectic
manifold (M,ω) and ψ ∈ Ham(M,ω). Assume that
[ω] · π2(M,L) = 0. Then

#(L ∩ ψ(L)) ≥
∑
j

rankHj(L;Z/2)
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Arnold’s Conjecture

Now let ψ ∈ Ham(M,ω) with non-degenerate fixed points.

Graph(ψ) is a Lagrangian submanifold of the symplectic
manifold (M ×M,π∗1(ω)− π∗2(ω))

nondegeneracy ⇒ Graph(ψ) is transverse to the diagonal
∆ = {(x, x) : x ∈M}
assuming Graph(ψ),∆ satisfy the hypotheses for L0, L1,

#(∆ ∩Graph(ψ)) = #(∆ ∩ (1× ψ)(∆))

≥
2n∑
j=0

rankHj(∆;Z/2)

=

2n∑
j=0

rankHj(M ;Z/2)
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Arnold’s Conjecture

Corollary

Let (M,ω) be a closed symplectic manifold for which π2(M) = 0. If
ψ ∈ Ham(M,ω) has non-degenerate fixed points, then

#(Fix(ψ)) ≥
2n∑
j=0

rankHj(M ;Z/2).



Lagrangian Floer
Homology

John Gabriel P.
Pelias

Introduction

Action Functional

Holomorphic
Strips

The Floer
Complex

Applications

(Not Exactly) An Example

Example:
Consider M = S2 and L an equator in M .

This DOES NOT satisfy [ω] · π1(M,L) = 0. However, it is a
monotone Lagrangian, and Oh showed that Lagrangian Floer
homology can still be defined in this case.

Then, for any Hamiltonian diffeomorphism ψ of M ,

#(ψ(L) ∩ L) ≥
∑
i

rankHi(S1) = 2.

In particular, this shows that L is a non-displaceable Lagrangian
in M .
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