$\delta 29$ Application I: Bott's Periodicity $\frac{(\text { for Un)) Lecture } 17}{}$

$$
03 / 02
$$

Top Digression
Facts

$$
\begin{aligned}
\text { 1) } \quad v(n) \hookrightarrow & v(n+1) \\
\rightsquigarrow \quad \pi_{k}(v(n)) & \cong \pi_{k}(v(n+1)) \\
& \\
& k \leqslant 2 n-1
\end{aligned}
$$

2) $\quad \operatorname{SU}(n) \longrightarrow \mathbb{U}(n)$

Long exact

$$
\begin{aligned}
& \text { Long excl } \\
& \text { \& seq }
\end{aligned}
$$

$$
\Rightarrow \quad \pi_{k}(S \cup(n)) \cong \pi_{k}(v(n)) \quad k \geq 2
$$

Pf of 1$): \quad V(n+1)$ acts on $S^{2 n+1} \subset \mathbb{C}^{n+1}$ and $V(n)=\operatorname{stab}(\underbrace{\text { North Pole }})$
$\Rightarrow \quad U(n) \longleftrightarrow U(n+1) \ni A$

$$
\begin{aligned}
& \pi_{x+1} \sum^{2 n^{2}+1} \rightarrow \pi_{k} V(n) \rightarrow \pi_{k} V(n+1) \rightarrow \pi_{1} s^{2 n+1} \rightarrow \pi_{k-1}^{0} v(n) \\
& k+1<2 n+1
\end{aligned}
$$

set

$$
\begin{aligned}
U & =U U(n) \\
& =\xrightarrow{\lim _{m} U(n)} \\
& =\left\{\left(\begin{array}{ll}
\Psi_{0} & 0 \\
0 & v
\end{array}\right)\right\} \text { for some } n \\
\underbrace{\pi_{k}}_{\text {stable }} V & =\pi_{k} V(n)
\end{aligned} 2 n>k
$$

The (Bottles periodicity for -V)

$$
\pi_{1} v=\mathbb{Z}, \pi_{2} v=0, \pi_{3} v=\mathbb{Z}, \pi_{4} v=0
$$

Run \exists a similar periodicity forSO(n) but il's 8-periodic, \& mane unvotud

Pf. Following Milnon

- skipping one diff. geometry step

Note: con veplace $V(n)$ by $S \forall(n), k>1$

$$
\bar{u}_{k} v=\bar{u}_{k} 5 v
$$

A bit more topology:

$$
\begin{aligned}
& \text { Gr }_{m}(2 m) \\
&=\left\{m \text {-dim } \mathbb{C} \text {-subspaces in } \mathbb{C}^{2 m}\right\}
\end{aligned}
$$

Fact: $\quad \pi_{i} \operatorname{Cn} m(2 m) \cong \pi_{i-1} U(m)$

$$
i \leqslant 2 \mathrm{~m}
$$

Pf \| Two fibrotions:

b) $U(m) c U(2 m) / U(m)$

$$
\begin{aligned}
& \qquad \\
& V(2 m) / V(m) \times V(m)=\operatorname{Gr}_{m}(2 m) \\
& \Rightarrow \pi_{i} \operatorname{Gn}_{m}(2 m) \cong \pi_{i-l} V(m) \\
& i \leqslant 2 m
\end{aligned}
$$

Lowen-dim calculations

- $\pi_{2} v(\underline{\sim}) \cong \pi_{2} \underbrace{s u(2)}_{\tilde{\rho}^{3}}=0$

Rumb. $\pi_{2}\left(\right.$ any $L_{\text {ir }}$ gp $)=0$

Now the key port: Mors Theory
Metric on $S U(n)$ on $V(n)$
Equip SU(n) with the Killing metric

- biinvoriant
- On $T_{I} S U(n)=\operatorname{mn}(n) \quad\left(a r T_{I} U\right):$

$$
=\left\{A \mid A^{*}=-A, \operatorname{tv} A=0\right\}
$$

$$
\langle A, B\rangle=\operatorname{tr} A B^{*}
$$

Conj. invariant \Rightarrow right (on left) translation is bi-inv

$$
\begin{aligned}
& \cdot \exp (A)=I+A+\frac{1}{2} A^{2}+\frac{1}{3!} A^{3}+\ldots \\
& \Omega(I,-I, \operatorname{sU}(2 m)) \sim \Omega_{I}(\operatorname{su}(2 m))
\end{aligned}
$$

Lemma l: The space of minimizing geodesics frow I to $-I$ is homed (diffed) to $G_{r_{m}}(2 \mathrm{~m})$

Lemma 2: Every non-minizing geodesic from I to -I has morse index $\geqslant 2 m+2$

Rok - I is conj to I

$$
\begin{aligned}
\text { index }: & =\text { maxis } \operatorname{dim} V \\
& d_{\gamma}^{2} E l_{V}<0 \\
& \text { accounting for deg }
\end{aligned}
$$

- Weill prove Lemur 1.
- Lemma $2 \rightarrow$ milwor (need more did. geom..) Sounds reasonable: think of su(2m) as samithig like the sphere:
longer glodestes get a lot of conj. pts. (see the pf
- Lemmas I\& $2 \Rightarrow$ Bott's periodicity

$$
\pi_{k} \Omega(I,-I, S \cup(2 m))=\pi_{k} \Omega_{I}(S \cup(2 m))
$$

Lemmas \rightarrow SH $k \leqslant 2 m$

$$
\begin{aligned}
& \pi_{k} G r_{m}(2 m) \\
& \quad S \| k \leqslant 2 m \\
& \pi_{k-1} S U(2 m)
\end{aligned}
$$

Using the calurlation of $\pi_{k} \longrightarrow$ for $k=1 \& 2$ we learn whit this groups ave.

Pf of Lemma 1

$$
\begin{array}{ll}
\gamma_{A}(t)=\exp (t A) & n=2 m \\
A \in T_{I} s \cup(h): A^{*}=-A, \operatorname{tr} A=0
\end{array}
$$

$\Rightarrow A$ is diagonalizeble by a unitavy tranif

$$
B A B^{-1}=\left(\begin{array}{ccc}
i \pi a_{1} & & \\
\ddots & 0 \\
0 & \ddots & \\
0 & \ddots \pi a_{n}
\end{array}\right), B \in \vec{O}(n)
$$

Letes say A itselt has this foum

$$
\gamma_{A}(1)=\exp (A)=\left(\begin{array}{lll}
e^{i \pi a_{1}} & & \\
& & 0 \\
\\
0 & & \ddots \\
& & \\
& e^{i \pi a_{4}}
\end{array}\right)
$$

- $\exp (A)=-I \Leftrightarrow$ all $a_{j}=$ odd in bevgevs

$$
\text { - } \begin{aligned}
l\left(\gamma_{A}\right) & =\int_{0}^{1}\|A\| d t=\|A\| \\
& =\pi \sqrt{a_{1}^{2}+\ldots+a_{n}^{2}}
\end{aligned}
$$

$\Rightarrow \gamma_{A}$ is al minimaziy geodesic

$$
\Leftrightarrow \text { all } a_{j}= \pm 1
$$

- But tr $\quad \sum a_{j}=0$, $n=2 m$

$$
\Rightarrow \quad m \text { of } a_{j}=-1 \& m \text { ave }+1
$$

Rink This is the regor to work with $S U(2 \mathrm{~m})$ but not $V(n)$
$A \leadsto L \subset \mathbb{\sigma}^{2 n-1}, \quad L \in \operatorname{Grm}_{m}(2 m)$
A span of eigenvectors with eisk value -1
$\left\{\begin{array}{c}\text { mivimizily } \\ \text { geodesics }\end{array}\right\}$

$$
\left\{\begin{array}{l}
\downarrow \\
\{A\} \\
\\
\operatorname{Con}_{m}(2 m)
\end{array}\right.
$$

Rink This also suggests why Lewma 2 is true: then $\left|a_{j}\right| \geqslant 3$ for at least one a_{j}. This turns ant to imply a must conj pts along such a geodesic. (Non-dbviens)
§30 Applicetion II: Lefschetz Hyperplane
sechion Thm
Also in Milna but bexe we do a slightly diftevent pf should veally
Recall from couplex analysis:

- F: $\underset{\mathbb{E}^{m}}{\cup_{\mathbb{E}^{n}}} \rightarrow \underset{\hat{E}^{n}}{V}$ is holoworphie if

$$
\begin{aligned}
& D F \circ J=J_{0} D F @ \text { evevy }{ }_{\text {" }}{ }^{D} J=i \\
& D F \in M_{m \times n}(\mathbb{C})
\end{aligned}
$$

\Leftrightarrow all components of F setisity $C R$ with respect to every vowible (and F is $\mathrm{Cl}^{\text {? }}$?)

- complex menifolds ave just like smooth monifolds but smooth maps, clarts, ete are replaod by hol meps
Rnuk Couplex manifold never hove bounderg: eithr open or closed.
E.g.) The system of equehions

$$
\begin{cases}f_{1}=0 & f_{j}: \mathbb{C}^{h} \rightarrow \mathbb{C} \text { hol } \\ \vdots & \text { gives a couplex sulswowl, } \\ f_{k}=0 & \text { pronided tht } d f_{j} \text { ave } \\ & \text { lin.ind af every pt }\end{cases}
$$

2) Some true in $\mathbb{P} P^{4}$ when fj a hom. polykomials
We'll also need

$$
f(\lambda z)=\lambda^{d} f(z)
$$

Fact

$$
M \subset \mathbb{R}^{k}
$$

The function $f(x)=u x-p u^{2}$ is Movse on M for ollmost all

$$
p \in \mathbb{R}^{2}
$$

1In porticular this is true fon couplex submonitolds of \mathbb{E}^{k}.

In whot follows we 'll always annme thet $p=0$ and $f(x)=\|x\|^{2}$ is Dhouse.
In fect we heve proved thi)
see next page
$M \subset \mathbb{R}^{k}$

$$
h_{v}(z)=\left\langle x_{i} v\right\rangle: \text { pvoj } b \sigma \mathbb{R}
$$

$\downarrow f$ \mathbb{R}^{h}
\mathbb{R}
whit we hove shown is the:
For almost all $v \in \mathbb{R}^{L}$
$f+h_{v}$ is norse on M
But

$$
\begin{aligned}
& f f(x)=\|x\|^{2} \\
& \begin{aligned}
f(x)+h_{v}(x) & =\langle x, x\rangle+\langle x, v\rangle \\
& =\left\langle x+\frac{1}{2} v, x+\frac{1}{2} v\right\rangle-\frac{1}{4}\|v\|^{2}
\end{aligned} \\
& \Rightarrow\left\langle x+\frac{1}{2} v, x+\frac{1}{2} v\right\rangle \text { is House }
\end{aligned}
$$

Con veplau 0 by any pt.

Thm $M^{m} \subset \mathbb{C}^{n}$ couplex subenouifoll
\Rightarrow evevy critical pt of $f(x)=\|x\|^{2}$ on M has index $\leq m$
Con Assume Quat M is proper
(Mn any compets is conpet)
$\Rightarrow M$ has homotopy type of m-dim $C W$ couplex (perheis)

Mors theory
Disusion

- Here $\quad m=\operatorname{dim}_{\mathbb{C}} M, \quad 2 m=\operatorname{dim}_{H R} M$
- \mathbb{a}^{h} has no closed couplex submonifolds
\Uparrow (it it did, Thm would be wrongl Max principle: projt of M to aky coord is a hal function
M closed $\Rightarrow f=$ coust by max primiple
- The asertion is ersentially local

Only need to heve a ubd
of a crílial pt.

Pf $\cdot f: M^{m} \rightarrow \mathbb{R} \quad f(x)=u x \|^{2}$, mouse
Calculation $\quad \mathbb{E}^{n}$

$$
\underbrace{T_{p} M} \subset \mathbb{C}^{n-1} c T_{p} \$^{2 n-1}
$$

$$
\underbrace{a^{m}}_{\left(z_{1}, \ldots, z_{m}\right)} \underbrace{\left\{z_{1}, \ldots, z_{n-1},\right.} y_{n}\}
$$

- Near p : M is a grope of

$$
\begin{aligned}
& \text { a map } \mathbb{z}_{n m} \xrightarrow[\mathbb{C}_{n+1}^{m}]{\longrightarrow} \mathbb{C}^{n-m} \\
& S=\left(z_{1}, \ldots, z_{m}\right) \mapsto\left(g_{1}, \ldots, g_{n-m}\right) \longrightarrow \text { to } z_{n} \\
& \text { - } g_{k}(0)=0, k<n-m \\
& \text { - } g_{n-m}(0)=1 \\
& d g_{k}(0)=0
\end{aligned}
$$

$$
\begin{gathered}
f(s)=\sum_{j=\frac{\sum_{Q_{0}}^{m}\left|z_{j}\right|^{2}}{w_{0}} \sum\left|g_{k}\right|^{2}=\sum_{j=1}^{w}\left|z_{j}\right|^{2}}^{k<n-m \Rightarrow g_{k}(s)=O\left(|s|^{2}\right)} \begin{array}{c}
\Rightarrow\left|g_{k}\right|^{2}=O\left(|\zeta|^{4}\right)
\end{array}
\end{gathered}
$$

\Rightarrow does not coulibute to $d^{2} f$

$$
\begin{aligned}
& k=n-m, \quad g_{n-m}=1+O\left(|s|^{2}\right) \\
& \begin{array}{l}
g=g_{n-m}=1+\underbrace{\sum c_{e q} z_{e} z_{q}}_{H: \mathbb{C}^{m} \rightarrow \mathbb{C} \text { a complex quadratic }}+\ldots \\
\end{array} \\
& |g|^{2}=1+\underbrace{H+\bar{H}}_{Q_{1}}+\ldots \\
& \text { form } \\
& d_{p}^{2} f=Q_{0}+Q_{1} \\
& Q_{1}=H+\bar{H}: \mathbb{R}^{2 k n} \rightarrow \mathbb{R} \\
& Q_{1}(z)=H(z)+\overline{H(z)} \\
& =2 \operatorname{Re} H(z)
\end{aligned}
$$

claim: index $Q_{1} \leq m$
To be more precise $\mathbb{R}^{2 m_{4}}=\underbrace{V_{0} \oplus V_{+} \oplus V_{-}}_{\text {artogowel }}$
aced $Q \mid V_{0}=0$
ave $Q \mid v_{0}=0$

$$
\begin{aligned}
& Q_{1} \mid V_{ \pm} \geqslant 0 \\
& \operatorname{dim} V_{+}=\operatorname{dim} V_{-}
\end{aligned}
$$

claim \Rightarrow Tho

$$
\underset{v_{0}}{Q_{0}}+\left.\underset{v_{1}^{\prime}}{Q_{1}}\right|_{v_{0} \oplus V_{t}}>0
$$

and $\operatorname{dim}\left(V_{0}+V_{+}\right) \geqslant m$

$$
\Rightarrow \quad \operatorname{ind}\left(Q_{0}+Q_{1}\right) \leq m
$$

Pf of the Claim
Diagonalize H :

$$
B H B^{T}=\left(\begin{array}{lll}
1 & \ddots & 0 \\
& 1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad B \in E L(m, \mathbb{C})
$$

$L=$ eisensped

- eignvalere 0: Q, $L_{L}=0$
L goes into V_{0}
- eigenvalue 1: $L=\mathbb{C}=\mathbb{R}^{2}, \quad z=x+i y$

$$
\begin{aligned}
Q_{1}(z)=z^{2}+z^{-2} & =2 \operatorname{Re} z^{2} \\
& =x^{2}-y^{2}
\end{aligned}
$$

x-axis goer into V_{+}
y-axis goes into V_{-}

Pf I- Symplectic geomehrical

- Real symplectir form en $\mathbb{R}^{2 n}=\mathbb{C}^{n}$

$$
\begin{aligned}
\omega & =\sum d x_{k} \wedge d y_{k}
\end{aligned}=\frac{i}{2} \sum d z_{k} \wedge d \bar{z}_{k} .
$$

- $f=\frac{1}{4} \sum\left(x_{k}^{2}+y_{k}^{2}\right)=\frac{1}{4} \sum\left|z_{k}\right|^{2}$

$$
d f=\frac{1}{2} \sum\left(x_{k} d x_{k}+y_{k} d x_{k}\right)
$$

- J acts on $T\left(\mathbb{R}^{2 m}=\mathbb{C}^{k}\right)$
as mulloplication by i
$\Rightarrow J$ acts on $T^{*}\left(\mathbb{R}^{2 n}=\mathbb{C}^{k}\right)$

$$
J=\left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right) \quad 0
$$

us $(J \alpha)(v)=-\alpha(J v)$

$$
J d f=\frac{1}{2} \sum\left(x_{L} d y_{k}-y_{k} d x_{k}\right)=\lambda
$$

Checking: $(J d f)\left(\partial_{x_{k}}\right)=-d f\left(J \partial_{x_{k}}\right)=-d t\left(\partial_{y_{k}}\right)$ $(J d f)\left(\partial_{y_{k}}\right)=-d^{\prime}\left(\partial \partial_{y_{k}}\right)=-d t\left(-\partial x_{k}\right)$

$$
\Rightarrow \omega=d(J d f) \text { on } \mathbb{C}^{n}=\mathbb{R}^{2 h}
$$

- Mce \mathbb{E}^{n} conplex submonitold

$$
\left.\Rightarrow \frac{J: T M \supseteq}{\left.\omega\right|_{M}=d\left(\left.J d f\right|_{M}\right)} \quad \lambda\right|_{M}=\left.J d f\right|_{M}
$$

- Lionville v.f.
X on M for $\lambda 1 m$

$$
\begin{aligned}
i_{x} \omega & =\lambda \\
\Rightarrow \quad L_{x} \omega=\omega: \quad L_{x} \omega & =d_{i x} \omega+i x d \omega \\
& =d \lambda=\omega
\end{aligned}
$$

The flow φ_{t} of X stretches w :

$$
\varphi_{t}^{*} \omega=e^{t} \omega
$$

$$
\begin{aligned}
& \text { • } \quad \lambda=J d f: \\
& w(x, v)=-d f(\underbrace{J v}_{w}) \quad\langle,\rangle=w d f \\
& \underbrace{w(x,+J w)}=+d f(w) \\
&\langle x, w\rangle \cdot) \\
& \Rightarrow \quad x=d f(w):\langle x, \cdot\rangle=d f
\end{aligned}
$$

Purchline
$p \in \operatorname{Grit}(f$ on $M), \quad \omega_{p}$

$$
D \varphi_{t}^{*} \omega_{p}=e^{t} \omega_{p} \quad o_{n} \quad T_{p} M=\mathbb{R}^{2 m}
$$

$$
v, w \in T_{p} M
$$

$$
\begin{equation*}
\omega\left(D \varphi_{t} v, D \varphi_{t} w\right)=e^{t} \omega(v, w) \tag{x}
\end{equation*}
$$

$V \subset T_{p} M$ be such thet? stable $\left.\left.d_{p}^{2} f\right|_{v} \leq 0\right\}$ monitold"

$$
v, w \in V \Rightarrow D \varphi_{t} v, D \varphi_{t} w \underset{\rightarrow}{\rightarrow}<0
$$

or at most qrow polywmially as $t \rightarrow \infty$
$\Rightarrow \omega\left(D \varphi_{t} \sigma, D \varphi_{t} \omega\right)$ connot qrow exp in $(*)$

$$
\Rightarrow w(v, w)=0 \quad \forall v, w \in V
$$

$\Rightarrow V$ is isotropr

$$
\Rightarrow \operatorname{dim} V \leq m
$$

Rmk B.th pfs don't weed non-deg.
In both coses ind:= max $\operatorname{dim} v \geqslant m$

$$
\left.d^{2} f\right|_{E}>0
$$

Geometrically, asuming non-degenevocy

- $w^{s}(p)=: w=$ stoble manitold of f for

$$
x=\nabla f
$$

- $Y_{t}=$ grad flow $=$ flow of x

$$
\left\{\left.\cdot \varphi_{t}^{k} \omega\right|_{w}=\left.e^{t} \omega\right|_{w}\right.
$$

- But y^{t} cortroch W to a pt
$\omega)_{w}=0$ i.e. w is isotropie

$$
\Rightarrow \quad \operatorname{dim} w \leq m
$$

Back to the Lefschetz hyper place section thm
setting

$$
\begin{aligned}
& M^{n} \subset \underset{\cup}{\square} \quad \text { couplex subuouitold (clored) } \\
& \text { Lby det. alguraic) } \\
& H=\mathbb{C} P^{n-1} \leftarrow \text { hypeuplone } \\
& M \nrightarrow H \Rightarrow \underbrace{M a H C H} \\
& \text { couplex submonifolds in } H=\mathbb{C} P^{n-1}
\end{aligned}
$$

The Lefschetz hyperplane section thm:

Thm M is obteined from $M n H$ by attaching cells of $\operatorname{dim} \geqslant m$

$$
\text { Thm } \cdot H_{k}(M \cap H) \stackrel{\simeq}{\leftrightarrows} H_{k}(M) \text { if } k<m-1
$$

- $H_{m-1}(M \cap H) \underset{\text { onto }}{\rightarrow} H_{m-1}(M)($ both over $\mathbb{Z})$
- $\pi_{r}(M, M n H)=0 \quad r<m$
long exact sequence (Lefschetz duality?)

Pf. Recall

$$
\begin{aligned}
\mathbb{C} P^{n} \backslash\left(H=\mathbb{C} P^{n-1}\right) & =\mathbb{P}^{n} \text { holomorphically } \\
& \sim B^{n} \text { u metrically y } \\
& (\text { not literally) }
\end{aligned}
$$

Pick $0 \in \mathbb{C} P^{h} i H$ (qewerir)

- $\exists h: \mathbb{E P} \rightarrow \mathbb{R}$ such that

$$
\text { - }\left.h\right|_{H}=\min h=0 \quad\left\{\begin{array}{l}
E \cdot g . \\
(\text { dist to }+1)^{2}
\end{array}\right.
$$

$$
\text { - } h(0)=\operatorname{mex} h=1
$$

would do.

$$
h(z)=-g \cdot f(z), \quad f(z)=\|z\|^{2}
$$

- $\left.h\right|_{M}$. attains min on $M n H=0$
- Mouse outside Mn (bor a genenr chose of 0) with only finitely many crit pts.
Rank Gu moke sine hin is morse ${ }^{\text {Prot }}$
- M is obtained from

$$
\begin{aligned}
\{h \leqslant \varepsilon\} & =\text { small tab. who of } M n+1 \\
& \sim M \cap t l
\end{aligned}
$$

by attaching a cell of

$$
\begin{aligned}
& \text { dim }=\operatorname{index}(h \text { at } p \text {) } \\
& \text { for every } p \in \underbrace{\operatorname{Cnrit}(h \text { ar } M y M \cap H)} \text {) } \\
& \text { it }(f \text { on } M \backslash(M \cap H)) \\
& \text { and ind } h=2 m-\underbrace{\text { ind } f}_{\hat{m}} \geqslant m
\end{aligned}
$$

