MATH 210, MANIFOLDS III, Spring 2006

Homework Assignment V: Euler characteristic due Wednesday 05/24-2006

1. Let M be a smooth manifold. Furthermore, let us identify the diagonal Δ in $M \times M$ with M by using, say, the projection to the first factor. Show that the normal bundle to Δ in $M \times M$ is isomorphic to $T M$.
2. Prove that $\chi(M)=0$, when M is an odd-dimensional, closed manifold.
3. Let v be a vector field on \mathbb{R}^{n} with a non-degenerate zero at the origin. Thus, $v(x)=A x+\ldots$, where A is an invertible matrix and the dots denote higher order terms. Show that the origin is an isolated zero of v. Furthermore, recall that the index $\sigma(v)$ of v at the origin is, by definition, $\operatorname{sign}(\operatorname{det} A)=(-1)^{\nu}$, where ν stands for the number of real, negative, eigenvalues of A. Consider the map $f=v /\|v\|$ from a small sphere S_{ϵ}^{n-1} centered at the origin to S^{n-1}. Prove that $\operatorname{deg} f=\sigma(v)$.
4^{*}. Let M^{n} be an orientable, closed manifold. Prove that $\chi(M)=0$ if and only if there exists a non-vanishing vector field v on M.

Remark. Of course, the non-trivial statement is that v exists whenever $\chi(M)=0$. One may approach this as follows. First show that, under no assumptions on $\chi(M)$, there exists a vector field w such that all zeros of w are contained in a small ball B in a coordinate neighborhood. Now consider the map $f=w /\|w\|$ on ∂B. Prove that the degree of $f: \partial B \rightarrow S^{n-1}$ is equal to $\chi(M)$. In particular, $\operatorname{deg} f=0$ when $\chi(M)=0$. Due to the homotopy classification of maps $S^{n-1} \rightarrow S^{n-1}$ by degree, f extends to a map $F: B \rightarrow S^{n-1}$. Use this map F to modify w inside B to obtain a non-vanishing vector field.
5. Show that $\chi\left(\mathbb{C} P^{n}\right)=n+1$ by constructing a vector field v on $\mathbb{C} P^{n}$ with exactly $n+1$ zeros each of which is non-degenerate and has index one.

Remark. Here is a good candidate for v. Consider $F\left(z_{0}, \ldots, z_{n}\right)=\sum \lambda_{k}\left|z_{k}\right|^{2}$ on \mathbb{C}^{n+1}, where all coefficients λ_{k} are distinct. This function is invariant with respect to the diagonal action of S^{1}. Thus the restriction of F to the unit sphere descends to a smooth function f on $\mathbb{C} P^{n}$. Then v is the gradient of f with respect to a suitable (in fact, any) metric.

