# MATH 210, MANIFOLDS III, Spring 2006 

## Final Homework Assignment due Wednesday 05/31-2006

1. Let $M^{n}$ and $N^{n}$ be closed, oriented manifolds and let $f: M \rightarrow N$ be a map of non-zero degree. Prove that $f^{*}: H^{*}(N) \rightarrow H^{*}(M)$ is a monomorphism.

Hint. Use the Poincaré duality. Let $\omega \in H^{n}(N)$ be a non-zero element. Then $f^{*} \omega \neq 0$, for $\operatorname{deg} f \neq 0$. For any non-zero $\alpha \in H^{*}(N)$, there exists $\beta \in H^{*}(N)$ such that $\alpha \cup \beta=\omega$. Derive from this that $f^{*} \alpha \neq 0$.
2. Let $M$ be an oriented, compact manifold, possibly with boundary. Let $v$ be a vector field, pointing outward at the boundary points of $M$. Assuming that the zeros of $v$ are non-degenerate (this is a generic condition), define the Euler characteristic of $M$ by the same formula as for manifolds without boundary: $\chi(M)=\sum \sigma_{p}(v)$. Here the summation extends over all zeros $p$ of $v$ and the index $\sigma_{p}(v)$ is defined in the same way as for closed manifolds.
(a) Prove that $\chi(M)$ is well defined, i.e., independent of $v$.
(b) Assume that $M$ is odd-dimensional. Prove that $\chi(\partial M)=2 \chi(M)$.
(c) Prove that $\mathbb{C} P^{2 n}$ does not bound a compact, oriented manifold.
(d) Prove that $\mathbb{R} P^{2 n}$ does not bound a compact manifold.

Hints and remarks. Proving (b), one may argue as follows. Consider the double $N$ of $M$, with $\partial M$ canonically embedded into $N$. Utilizing the tubular neighborhood theorem, modify $v$ near $\partial M$ and then extend it to a vector field $w$ on $N$ such that $w$ is tangent to $\partial M$. Then counting zeros of $w$ and using fact that $\chi(N)=0$ conclude that $\chi(\partial M)=2 \chi(M)$. To establish (d), first observe that orientations are not really essential in (a) and (b). It should be clear that, if nothing else, (a) and (b) hold without orientations for $\chi \bmod 2$.
$\mathbf{3}^{*}$. Prove that every continuous map $f: \mathbb{R} P^{2 n} \rightarrow \mathbb{R} P^{2 n}$ has a fixed point. Show that there exists a diffeomorphism $f: \mathbb{R} P^{2 n+1} \rightarrow \mathbb{R} P^{2 n+1}$ without fixed points.

Hint. Here you may, for instance, first calculate the de Rham cohomology $H^{*}\left(\mathbb{R} P^{2 n}\right)$ and then use the Lefschetz fixed point theorem.
4. Let $M^{m}$ and $N^{n}$ be disjoint, closed, oriented submanifolds of $\mathbb{R}^{k+1}$ such that $m+n=k$. Recall from Homework Assignment IV that he linking number $L k(M, N)$ is the degree of the map $F: M \times N \rightarrow S^{k}$ defined by $F(x, y)=(x-y) /\|x-y\|$.
(a) Assume that $N=S^{k-n}$ is a small sphere in a fiber of a tubular neighborhood of $M$, centered at the origin in the fiber. Prove that $L k(M, N)=1$, when $N$ is suitably oriented.
(b) Assume that $N=\partial X$, where $X$ is a compact oriented submanifold with boundary in $\mathbb{R}^{k+1}$. Since $N=\partial X$ is disjoint from $M$, the intersection number $M \cdot X$ is defined. Prove that $\operatorname{Lk}(M, N)=M \cdot X$.

Hints and remarks. In (b), you may assume without loss of generality that $X$ is transverse to $M$. Let $\left\{p_{1}, \ldots, p_{l}\right\}=M \cap X$. Let $D_{1}, \ldots, D_{l}$ be small balls in $X$ centered at $p_{1}, \ldots, p_{l}$. Then the map $F$ extends to a $\operatorname{map} \Phi: M \times Y$, where $Y$ is the complement of $D_{1}, \ldots, D_{l}$ in $X$. It follows that the $\operatorname{deg} F=\left.\sum \operatorname{deg} \Phi\right|_{M \times S_{i}}$, where $S_{i}=\partial D_{i}$, or in other words $L k(M, N)=\sum L k\left(M, S_{i}\right)$. Furthermore, taking orientations into account, show that $\sum L k\left(M, S_{i}\right)=M \cdot X$. Note that the embedding $X \hookrightarrow \mathbb{R}^{k+1}$ can be replaced by an arbitrary map $f: X \rightarrow \mathbb{R}^{k+1}$, as long as $\left.f\right|_{\partial X}$ is an orientation preserving diffeomorphism from $\partial X$ to $N$.
5. Let $E$ be an oriented vector bundle over a closed, oriented manifold $M$. Let $s$ be a section of $E$ transverse to the zero section. Then $L=$ $\{s=0\}=s(M) \cap M$ is a smooth, oriented submanifold of $M$ of dimension $k=\operatorname{dim} M-\operatorname{rk} E$.
(a) Prove that the normal bundle to $L$ in $M$ is isomorphic to $\left.E\right|_{L}$.
(b) Prove that the Euler class $e(E)$ is Poincaré dual to $L$, i.e., $\int_{L} \alpha=$ $\int_{M} e(E) \wedge \alpha$, for every closed $k$-form $\alpha$. (Here we use the notation $e(E)$ simultaneously for the cohomology class $e(E)$ and for a differential form representing this class.)

