MATH 209, MANIFOLDS II, WINTER 2006

Homework Assignment VII: De Rham cohomology and the Poincaré lemma, due Tuesday 3/07–2006

1. Problem 15-3, page 407, of the textbook.

2. Problem 15-8, page 408, of the textbook. Remark: in part (c) use the fact that $H^2(S^n) = 0$, if $n \neq 2$, which we will prove soon.

3^{*}. Problem 15-9, page 408, of the textbook.

4. The main objective of this problem is to prove that $H_c^*(M) = H_c^{*+1}(M \times \mathbb{R})$, where M is an arbitrary manifold – as we will soon see this is a consequential result. Here we closely follow the argument from *Differential forms in algebraic topology* by Bott and Tu. First let us set some notation and conventions. Denote by π the natural projection $M \times \mathbb{R} \to M$ and let t be a point in \mathbb{R} . A k-form ω on $M \times \mathbb{R}$ can be expressed as a linear combination of forms of two types: forms of the first type are $f \cdot \pi^* \alpha$, where $\alpha \in \Omega^k(M)$ (not necessarily compactly supported) and $f \in C_c^{\infty}(M \times \mathbb{R})$; forms of the second type are $(\pi^*\beta) \wedge (f dt)$, where $\beta \in \Omega^{k-1}(M)$ (not necessarily compactly supported) and $f \in C_c^{\infty}(M \times \mathbb{R})$.

- (a) Define the "integration over the fibers" $\pi_* \colon \Omega^*_c(M \times \mathbb{R}) \to \Omega^{*-1}_c(M)$ by $\pi_*\omega = 0$, when ω is of the first type, and $\pi_*(\omega) = \left(\int_{-\infty}^{\infty} f \, dt\right) \beta$ if ω is of the second type. Then π_* is a well-defined map. Prove that $d\pi_* = \pi_* d$, i.e., π_* induces a homomorphism of complexes.
- (b) Fix a smooth compactly supported function g(t) with $\int_{-\infty}^{\infty} g \, dt = 1$. Define a linear map $\Phi \colon \Omega_c^{*-1}(M) \to \Omega_c^*(M \times \mathbb{R})$ by $\Phi(\alpha) = \alpha \wedge g \, dt$. Prove that Φ commutes with the differential d.

Our next objective is two show that π_* and Φ induce, in cohomology, maps that are inverse to each other.

(c) Define $K: \Omega_c^*(M \times \mathbb{R}) \to \Omega_c^{*-1}(M \times \mathbb{R})$ by $K(\omega) = 0$ when ω is of the first type and, when $\omega = f \, dt \wedge \pi^* \beta$ is of the second type, by

$$K(\omega) = \left(\int_{-\infty}^{t} f \, dt - G(t) \int_{-\infty}^{\infty} f \, dt\right) \cdot \beta,$$

where $G(t) = \int_{-\infty}^{t} g \, dt$. Prove that $\omega - \Phi \pi_*(\omega) = (-1)^{k-1} (dK - Kd)(\omega)$ for $\omega \in \Omega_c^k(M \times \mathbb{R})$.

(d) Prove, using (c), that π_* induces an isomorphism $H^*_c(M) \cong H^{*+1}_c(M \times \mathbb{R})$.

5. Derive from Problem 4 that

$$H_c^*(\mathbb{R}^n) = \begin{cases} 0 & \text{if } * \neq n, \\ \mathbb{R} & \text{if } * = n. \end{cases}$$

This result is known as the Poincaré lemma for forms with compact support.