MATH 209, MANIFOLDS II, WINTER 2006

Homework Assignment VI: Orientations and integration, due Tuesday 2/28-2006

- **1.** Let $F: S^n \to S^n$ be the antipodal map.
 - (a) Prove that F is orientation preserving when n is odd and orientation reversing when n is even.
 - (b) Prove that $\mathbb{R}P^n$ is orientable if and only if n is odd.
- **2.** Let $F: \mathbb{C} \to \mathbb{C}$ be a holomorphic function. Show that F is necessarily orientation preserving at its regular points, i.e., $F^*dx \wedge dy = f dx \wedge dy$ with $f \geq 0$.
- **3.** Let N be a hypersurface in M and let ω be a volume form on M.
 - (a) Let v be a vector field nowhere tangent to N. Prove that $i_v \omega|_N$ is a volume form on N.
 - (b) Prove that $i_v \omega|_N = i_w \omega|_N$ if v w is tangent to N.

Remark. Assume that the hypersurface N is the boundary of M. Then the construction of Part (a) gives an alternative description of the orientation induced on N. Indeed, let v point outward and let an orientation of M be determined by ω . Then the induced orientation of $N = \partial M$ is determined by $i_v \omega$ and is well defined. Note also that in both (a) and (b) it suffices to have v defined only along N.

4. Let $M \subset \mathbb{R}^3$ be the graph of a function z = f(x,y) with (x,y) lying in some bounded closed domain U of \mathbb{R}^2 . Let \mathbf{v} be a vector field in \mathbb{R}^3 defined on a neighborhood of M. Recall from vector calculus that the surface integral of \mathbf{v} over M is defined as

$$\iint_{M} \mathbf{v} \cdot d\mathbf{S} = \iint_{M} \mathbf{v} \cdot \mathbf{n} \, dS = \iint_{U} (\mathbf{v} \cdot \mathbf{n})(x, y) \sqrt{1 + (\partial_{x} f)^{2} + (\partial_{y} f)^{2}} \, dx \, dy,$$

where **n** is the unit upward normal vector field to M. Let $\omega = dx \wedge dy \wedge dz$.

- (a) Prove that $\iint_M \mathbf{v} \cdot d\mathbf{S} = \int_M i_{\mathbf{v}} \omega$, where the orientation of M is induced by ω and \mathbf{n} as in Problem 3.
- (b) Prove that $F^*i_{\mathbf{n}}\omega = \sqrt{1 + (\partial_x f)^2 + (\partial_y f)^2} dx \wedge dy$, where $F: U \to M$ is the natural diffeomorphism $(x, y) \mapsto (x, y, f(x, y))$.

Remark. Since every hypersurface is locally a graph (in some orthogonal coordinates), this statement indicates that in general the integral of \mathbf{v} over a hypersurface in the sense of vector calculus is equal to the integral of $i_{\mathbf{v}}\omega$.

5. Let $\omega \in \Omega^2(M)$ and $u: [0,1] \times [0,1] \to M$ be a smooth map. Prove that $u^*\omega = \omega\left(\frac{\partial u}{\partial t}, \frac{\partial u}{\partial s}\right) dt \wedge ds$ and, as a consequence,

$$\int_{u} \omega = \int_{0}^{1} \int_{0}^{1} \omega \left(\frac{\partial u}{\partial t}, \frac{\partial u}{\partial s} \right) dt ds.$$

6. Let $\omega = x \, dy \wedge dz - y \, dx \wedge dz + z \, dx \wedge dy$. Evaluate $\int_{S_R^2} \omega$, where S_R^2 is the sphere of radius R centered at the origin.

1