MATH 209, MANIFOLDS II, WINTER 2006

Homework Assignment V: More on Differential Forms, due Tuesday 2/14-2006

Throughout this assignment we assume that M a smooth manifold of dimension n.

1. Prove, using the original definition, that for a vector field v on M and $\alpha \in \Omega^{k}(M)$ and $\beta \in \Omega^{l}(M)$, we have $L_{v}(\alpha \wedge \beta)=\left(L_{v} \alpha\right) \wedge \beta+\alpha \wedge\left(L_{v} \beta\right)$.
2. Let $\omega=d x_{1} \wedge \cdots \wedge d x_{n}$ on \mathbb{R}^{n}. Prove that for any vector field $v=\left(v_{1}, \ldots, v_{n}\right)$ on \mathbb{R}^{n}, we have $L_{v} \omega=(\operatorname{div} v) \omega$, where $\operatorname{div} v:=\left(\partial v_{1} / \partial x_{1}\right)+\cdots+\left(\partial v_{n} / \partial x_{n}\right)$.

Remark. By definition, a volume form on M is an n-form ω such that $\omega_{x} \neq 0$ for any $x \in M$, i.e., ω is a non-vanishing n-form. Define the divergence $d i v_{\omega} v$ of v with respect to ω by $L_{v} \omega=\left(\operatorname{div}_{\omega} v\right) \omega$. Then $\operatorname{div}_{\omega} v$ measures to what extent the flow φ_{t} of v is volume expanding or contracting. In particular, $\operatorname{div}_{\omega} v=0$ is equivalent to $\varphi_{t}^{*} \omega=\omega$, i.e., the flow is volume preserving.
3. Recall that a distribution \mathcal{D} on M is a smooth sub-bundle of $T M$, i.e., a family of subspaces $\mathcal{D}_{x} \subset T_{x} M$ depending smoothly on x. A distribution is said to be involutive or integrable if for any two vector fields v and w tangent to \mathcal{D} (i.e., such that $v(x)$ and $w(x)$ are in \mathcal{D}_{x} for all $x \in M$), the Lie bracket $[v, w]$ is again tangent to \mathcal{D}. (See the textbook for more details.)
(a) Is the distribution \mathcal{D} spanned by $v=\partial_{x}$ and $w=x \partial_{z}-\partial_{y}$ on \mathbb{R}^{3} integrable? Conclude from your solution that every function which is constant along the distribution \mathcal{D} (i.e., such that $L_{v} f=L_{w} f=0$ everywhere) must be constant. Sketch this distribution.
(b) Let $f: M \rightarrow \mathbb{R}$ be a function without critical points on M, i.e., such that $d f_{x} \neq 0$ for any $x \in M$. Show that the distribution $\mathcal{D}_{x}:=\operatorname{ker} d f_{x}$ is integrable. (What are integral submanifolds for this distribution?)
4. Let α be a non-vanishing one-form on M. Consider the distribution $\mathcal{D}_{x}=\operatorname{ker} \alpha_{x}$. (For instance, the distribution from Problem 3(a) can be given as $\operatorname{ker}(d z+x d y)$.) Prove that \mathcal{D} is involutive if and only if $\alpha \wedge d \alpha=0$.

Hint. First prove that $\alpha \wedge d \alpha=0$ is equivalent to that $d \alpha$ vanishes on \mathcal{D}, i.e., $d \alpha(v, w)=$ for any vectors v and w tangent to \mathcal{D}. Then use the expression $d \alpha(v, w)=L_{v} \alpha(w)-L_{w} \alpha(v)-$ $\alpha([v, w])$. The result of Problem 4 is a form of the Frobenius theorem for distributions of codimension one. What examples of involutive distributions of codimension one do you know? Try to construct such a distribution (or rather a foliation) on S^{3}.

5*. Let φ^{t} and ψ^{t} be, respectively, the flows of vector fields v and w on M. Fix $p \in M$ and set $\gamma(t)=\psi^{-t} \varphi^{-t} \psi^{t} \varphi^{t}(p)$. Prove that $\gamma^{\prime}(0)=0$. Then show that $\gamma^{\prime \prime}(0)$ is well defined and equal to $2[v, w](p)$.

Remark. This explicitly shows that $[v, w]$ measures to what extent the flows of v and w do not commute. The difficult part is the identity $\gamma^{\prime \prime}(0)=2[v, w](p)$. You may want to first look into this identity for linear vector fields on \mathbb{R}^{n}, before dealing with the general case. (See also Spivak's A Comprehensive Introduction to Differential Geometry, vol. I, p. 159-162.)

