MATH 209, MANIFOLDS II, WINTER 2006

Final
 due Thursday 3/16-2006

Throughout the exam all manifolds, maps, and homotopies are assumed to be smooth.

1. Let N be a compact oriented n-dimensional submanifold with connected boundary in a manifold M. Prove that the restriction map $H^{n-1}(M) \rightarrow H^{n-1}(\partial N)$ is zero.
2. Let U be an open subset with in a manifold M. Assume that $H^{k-1}(M \backslash \bar{U})=0$ for some $k \geq 1$, where \bar{U} is the closure of U. Let α be an exact k-form on M supported in U. Prove that for any open set $V \supset \bar{U}$, there exists a primitive of α supported in V.

Hint: argue as in the proof of Lemma 15.22 of the textbook. Remark: The assertion of the problem (combined with the Poincaré lemma, homotopy invariance of de Rham cohomology, and the calculation of $H^{*}\left(S^{n}\right)$) readily implies the Poincaré lemma for forms with compact support.
3. Problem 15-7 on page 408 of the textbook. (For the result to hold as stated one should also require M_{1} and M_{2} to be closed.) Prove, as a consequence, that $H^{1}\left(\Sigma_{g}\right)=\mathbb{R}^{2 g}$, where Σ_{g} is the sphere with g handles.
4. For any $k \in \mathbb{Z}$ and $n>0$ construct a smooth map $f: S^{n} \rightarrow S^{n}$ with $\operatorname{deg} f=k$.

Remark. We will show next quarter that two maps f_{1} and f_{0} from S^{n} to itself are homotopic if and only if $\operatorname{deg} f_{0}=\operatorname{deg} f_{1}$.
5. Let M be a compact n-dimensional manifold with non-empty boundary. Prove that $H^{n}(M)=0$.

Remark. More generally, $H_{c}^{n}(M)=0$ once $\partial M \neq \emptyset$ even when M is not compact.
6 (Hopf invariant). The goal of this problem is to introduce a homotopy invariant of maps $f: S^{3} \rightarrow S^{2}$, the so-called Hopf invariant, and to establish some of its properties.
(a) Let $\omega \in \Omega^{2}\left(S^{2}\right)$ be an arbitrary form with $\int_{S^{2}} \omega=1$. Since $H^{2}\left(S^{3}\right)=0$, the pull back $f^{*} \omega$ is exact. Define the Hopf invariant of f by $H(f)=\int_{S^{3}} \lambda \wedge f^{*} \omega$, where λ is a primitive of $f^{*} \omega$, i.e., $d \lambda=f^{*} \omega$. Prove that $H(f)$ is well-defined, i.e., independent of the choice of λ when ω is fixed and, furthermore, independent of the choice of ω.
(b) Evaluate the Hopf invariant for the Hopf fibration $S^{3} \rightarrow S^{2}$.
(c) Prove that $H(f)$ is homotopy invariant.
(d) Consider maps $h: S^{3} \rightarrow S^{3}$ and $g: S^{2} \rightarrow S^{2}$. Prove that $H(g \circ f)=\operatorname{deg}(g)^{2} H(f)$ and $H(f \circ h)=\operatorname{deg}(h) H(f)$.

Remarks. Next quarter we will show that $H(f) \in \mathbb{Z}$ for all f. It follows from Parts (b) and (d), and Problem 2, that $H(f)$ can assume arbitrary integer values. Furthermore, (b) and
(c) imply that the Hopf fibration map is not homotopic to identity. The converse of (c) also holds: two maps f_{1} and f_{0} from S^{3} to S^{2} are homotopic if and only if $H\left(f_{0}\right)=H\left(f_{1}\right)$.
7. Prove that a real vector bundle over S^{1} is trivial if and only if it is orientable.

