MATH 209, MANIFOLDS II, WINTER 2019

Final
due Thursday, 03/14, in class

Throughout the exam all manifolds, maps, and homotopies are assumed to be smooth.

1. Which of the following manifolds are orientable and which are not:
(a) $\mathbb{R} P^{2}, \mathbb{R} P^{3}$, the special orthogonal group $\mathrm{SO}(3)$;
(b) the complex projective space $\mathbb{C} P^{n}$.

Justify your answer in some detail.
2. Prove that a real vector bundle over S^{1} is trivial if and only if it is orientable.
3. Let D be a closed two-dimensional disk.
(a) Show that there is no smooth map $f: D \rightarrow \partial D$ such that $\left.f\right|_{\partial D}=i d$.
(b) Let $f: D \rightarrow \mathbb{R}^{2}$ be a smooth map such that the origin $p=(0,0)$ is not in $f(\partial D)$ and the winding number $W\left(p,\left.f\right|_{\partial D}\right) \neq 0$. Prove that $f^{-1}(p) \neq \emptyset$.
Remark: it is not hard to derive the fundamental theorem of algebra as a consequence of part (b).
4. Let A be the surface area of the unit sphere $S^{n-1} \subset \mathbb{R}^{n}$ with respect to the induced metric. Prove that $A=n V$, where V be the volume of the unit ball in \mathbb{R}^{n}. Hint: show that the Riemannian volume form on S^{n-1} (or the area form if you wish to distinguish it from the form on \mathbb{R}^{n}) is the restriction to S^{n-1} of the form

$$
\sigma=\sum_{j=1}^{n}(-1)^{j-1} x_{j} d x_{1} \wedge \ldots \wedge \widehat{d x_{j}} \wedge \ldots \wedge d x_{n}
$$

defined on \mathbb{R}^{n}, and then use Stokes' theorem.
5. Consider the standard symplectic form

$$
\omega=d p_{1} \wedge d q_{1}+\ldots+d p_{n} \wedge d q_{n}
$$

on $\mathbb{R}^{2 n}$ with coordinates $\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)$. Let us identify $\mathbb{R}^{2 n}$ with \mathbb{C}^{n} by setting $z_{k}=$ $p_{k}+i q_{k}$. Let A be a linear unitary transformation of \mathbb{C}^{n}. Show that A is symplectic, i.e., $A^{*} \omega=\omega$. Give an example of a symplectic linear transformation which is not unitary.
6. Let $F: P \rightarrow M$ be a surjective (i.e., onto) smooth map and let α be a differential form on M. Show that $\alpha=0$ whenever $F^{*} \alpha=0$. (The converse is obvious.) Hint: you need to use Sard's lemma.
7^{*}. Poincaré's lemma asserts that every closed differential form α on \mathbb{R}^{n} is exact: $d \alpha=0$ iff $\alpha=d \beta$ for some β. The objective of this problem is to give a direct proof of Poincaré's lemma.

Let v be a vector field on a manifold M and α be a k-form on M. Assume that the flow φ_{t} of v is defined for all $t \in \mathbb{R}$.
(a) Prove that $i_{v} \varphi_{t}^{*} \alpha=\varphi_{t}^{*} i_{v} \alpha$.
(b) Prove that for all $t \in \mathbb{R}$

$$
\frac{d}{d t} \varphi_{t}^{*} \alpha=L_{v} \varphi_{t}^{*} \alpha=\varphi_{t}^{*} L_{v} \alpha
$$

Let now $M=\mathbb{R}^{n}$ and v be given by $v(x)=-x, x \in \mathbb{R}^{n}$. (Here we identify $T_{x} \mathbb{R}^{n}$ and \mathbb{R}^{n}.) Let $k \geq 1$. Consider the linear operator $H_{k}: \Omega^{k}\left(\mathbb{R}^{n}\right) \rightarrow \Omega^{k-1}\left(\mathbb{R}^{n}\right)$ defined by

$$
\left(H_{k} \alpha\right)\left(w_{1}, \ldots, w_{k-1}\right)=-\int_{0}^{\infty}\left(\varphi_{t}^{*} i_{v} \alpha\right)\left(w_{1}, \ldots, w_{k-1}\right) d t
$$

for a k-form α on \mathbb{R}^{n}.
(c) Prove that the improper integral in the definition of $H_{k} \alpha$ converges.
(d) Show that $d H_{k} \alpha+H_{k+1} d \alpha=\alpha$ for any k-form α on \mathbb{R}^{n}. In particular, if α is closed, $\alpha=d H_{k} \alpha$ and, hence, α is exact. This completes the proof of Poincaré's lemma. Hint: Use Part (b) and Cartan's formula!

