MATH 209, MANIFOLDS II, WINTER 2017

Midterm

due Thursday $2 / 23$

1. Let X and Y be smooth vector fields on a manifold M and $\alpha \in \Omega^{*}(M)$. Prove that $L_{X}\left(i_{Y} \alpha\right)=$ $i_{[X, Y]} \alpha+i_{Y}\left(L_{X} \alpha\right)$.
2. Let α be a non-vanishing 1-form on a manifold M. Prove that the following two conditions are equivalent:
(i) For any two vector fields X and Y such that $\alpha(X)=0$ and $\alpha(Y)=0$ identically on M we necessarily have $\alpha([X, Y])=0$. (In other words, for any two vector fields X and Y taking values in $\operatorname{ker} \alpha$ at every point of M, the bracket $[X, Y]$ also takes values in ker α. Remark: A distribution, i.e., a sub-bundle of $T M$, meeting this requirement is called integrable or involutive; cf. Chap. 19.)
(ii) $\alpha \wedge d \alpha=0$.
3. Consider the vector fields $v=\partial_{x}$ and $w=x \partial_{y}+\partial_{z}$ on \mathbb{R}^{3}. Let f be a function such that $L_{v} f=0$ and $L_{w} f=0$ everywhere on \mathbb{R}^{3}. Prove that f is a constant function.
4. Let B be a smooth function on \mathbb{R}^{2} with coordinates q_{1} and q_{2}. Consider the two-form

$$
\omega=B \cdot d q_{1} \wedge d q_{2}+d p_{1} \wedge d q_{1}+d p_{2} \wedge d q_{2}
$$

on $T^{*} \mathbb{R}^{2}=\mathbb{R}^{4}$. Let also X_{H} be the Hamiltonian vector field of $H=\left(p_{1}^{2}+p_{2}^{2}\right) / 2$ on \mathbb{R}^{4} with respect to ω. Recall that X_{H} is defined by the equation $i_{X_{H}} \omega=-d H$.
(a) Prove that ω is a symplectic form.
(b) Show that

$$
X_{H}=p_{1} \partial_{q_{1}}+p_{2} \partial_{q_{2}}+B \cdot\left(p_{2} \partial_{p_{1}}-p_{1} \partial_{p_{2}}\right)
$$

(c) Prove that the projection $q(t)=\left(q_{1}(t), q_{2}(t)\right)$ of an integral curve of X_{H} to \mathbb{R}^{2} satisfies the equation $\ddot{q}=-B(q) J \dot{q}$, where J is the rotation in $\pi / 2$ counterclockwise. Furthermore, $p_{1}(t)=\dot{q}_{1}(t)$ and $p_{2}(t)=\dot{q}_{2}(t)$.
(d) Assume that B is constant. Show that the solutions of the equation from (c) are circles. Calculate the radii of these circles as a function of the energy $E=\left(p_{1}^{2}(0)+p_{2}^{2}(0)\right) / 2$ and the constant B.

Remark. By Part (c), this problem gives a Hamiltonian description of the motion of a unit charge (with unit mass) confined to a plane in the magnetic field of magnitude B, perpendicular to the plane.
5. Let ω be an n-form on an n-dimensional manifold M. Assume that $\omega_{p} \neq 0$ at some point $p \in M$. Show that there exist local coordinates x_{1}, \ldots, x_{n} near p such that $\omega=d x_{1} \wedge \cdots \wedge d x_{n}$.
6. Show that the total space of the tangent bundle $T M$ is an orientable manifold, regardless of whether M itself is orientable or not. Moreover, $T M$ carries a canonical orientation (as a manifold).
7. Prove that for any $n \geq 1$ the manifold $S^{n} \times S^{1}$ is parallelizable, i.e., its tangent bundle is trivial.

