MATH 209, MANIFOLDS II, WINTER 2017

Homework Assignment II: Vector bundles

1. Let E be a vector bundle over M. Show that for any two points $p \neq q$ in M there exists a section s of E such that $s(p)=0$ and $s(q) \neq 0$. (In contrast with the case of smooth or continuous functions on M, we cannot replace p and q here by disjoint closed sets. Why?)
2. Let $E_{\mathbb{C}}$ be a complex line bundle and let $E_{\mathbb{R}}$ be the same line bundle regarded as a real vector bundle. (Thus $\mathrm{rk}_{\mathbb{R}} E_{\mathbb{R}}=2$.) Prove that $E_{\mathbb{C}}$ is trivial if and only if $E_{\mathbb{R}}$ is trivial.
3. Let E be a real vector bundle over a compact manifold M. Assume that $\operatorname{rk} E>\operatorname{dim} M$. Prove that E has a non-vanishing section.

Remark. Hint: use the transversality theorem. Even if you cannot quite prove the assertion, try to come up with a plausible reasoning and figure out what it is exactly that you are not proving.
4. Problem 10-5 (Chapter 10) on page 269 of the textbook.

Remark. You may also want to take a look at Problems 10-6, 10-12, and 10-7. (The latter is rather tedious.) These problems will give you a better understanding of how transition functions work.
5. Problems 10-1, 10-13, and 10-16 (Chapter 10) on pages 268-271 of the textbook.

Remark. Note that a smooth vector bundle which is trivial as a smooth vector bundle is also trivial as a continuous vector bundle. Then in 10-1, it suffices to show that E is not trivial as a continuous vector bundle.
6. Prove that the tautological line bundle E over $\mathbb{R} P^{n}=\operatorname{Gr}_{\mathbb{R}}(1, n+1)$ is non-trivial. What is the unit sphere bundle $S E$ in this case? Identify $S E$ and the projection $S E \rightarrow \mathbb{R} P^{n}$.

Hint. First observe that the restriction of a trivial vector bundle to any subset (submanifold) is necessarily trivial. Then show that the restriction of E to $\operatorname{Gr}_{\mathbb{R}}(1,2)$ is the tautological line bundle over $\operatorname{Gr}_{\mathbb{R}}(1,2)$, which is non-trivial by Problem 4.
7^{*}. Let E be the tautological complex line bundle over $\mathbb{C} P^{n}=\operatorname{Gr}_{\mathbb{C}}(1, n+1)$.
(a) Prove that $S E$ is diffeomorphic to $S^{2 n+1}$.
(b) Prove furthermore that the natural projection $S E \rightarrow \mathbb{C} P^{n}$ is (what does this mean?) the Hopf bundle $S^{2 n+1} \rightarrow \mathbb{C} P^{n}$.
(c) Sketch the fibers of the Hopf bundle $S^{3} \rightarrow \mathbb{C} P^{1}$ in $\mathbb{R}^{3}=S^{3} \backslash$ \{one point\}.

Remark. This is an important problem which relies on some definitions that you may need to look up or ask me about, e.g., the definition of the Hopf bundle, although I have discussed some of them in class. Note the similarity with Problem 5. Also, $\mathbb{C} P^{1}$ is diffeomorphic to S^{2}. Why? Define a homeomorphism if not a diffeomorphism. If we accept the fact that S^{3} is not homeomorphic to $S^{2} \times S^{1}$ or more generally that $S^{2 n+1}$ is not homeomorphic to $\mathbb{C} P^{n} \times S^{1}$ (e.g., because $\pi_{1}\left(S^{2 n+1}\right)=0$ while $\pi_{1}\left(\mathbb{C} P^{n} \times S^{1}\right)=\mathbb{Z}$), we conclude that E is non-trivial.

