MATH 209, MANIFOLDS II, WINTER 2017

Final
due Monday, 03/20, by 3pm

Throughout the exam all manifolds, maps, and homotopies are assumed to be smooth.

1. Prove that the complex projective space $\mathbb{C} P^{n}$ is orientable.
2. Let A be the surface area of the unit sphere $S^{n-1} \subset \mathbb{R}^{n}$ with respect to the induced metric. Prove that $A=n V$, where V be the volume of the unit ball in \mathbb{R}^{n}. Hint: show that the Riemannian volume form on S^{n-1} (or the area form if you wish to distinguish it from the form on \mathbb{R}^{n}) is the restriction to S^{n-1} of the form

$$
\sigma=\sum_{j=1}^{n}(-1)^{j-1} x_{j} d x_{1} \wedge \ldots \wedge \widehat{d x_{j}} \wedge \ldots \wedge d x_{n}
$$

defined on \mathbb{R}^{n}, and then use Stokes' theorem.
3. Let α be a closed 1-form on \mathbb{R}^{n}. For $x \in \mathbb{R}^{n}$, set

$$
f(x)=\int_{\gamma} \alpha
$$

where γ is the straight path connecting 0 to x and oriented from 0 to x, i.e., $\gamma(t)=t x$ for $t \in[0,1]$. Prove that $d f=\alpha$. (This is a very particular case of Poincaré's lemma.)
4. Let M be a compact connected n-dimensional manifold with non-empty boundary. Prove that $H^{n}(M)=0$.

Remark. More generally, $H_{c}^{n}(M)=0$ once $\partial M \neq \emptyset$ even when M is not compact.
5. Problem 17-7 on page 465 of the textbook: Let M_{1} and M_{2} be connected smooth manifolds of dimension $n \geq 3$ and let $M_{1} \# M_{2}$ be their smooth connected sum. (See Example 9.31 in the textbook for the definition.) Prove that $H^{k}\left(M_{1} \# M_{2}\right)=H^{k}\left(M_{1}\right) \oplus$ $H^{k}\left(M_{2}\right)$ when $0<k<n-1$ and also for $k=n-1$ provided that M_{1} and M_{2} are both compact and orientable. Show, that, as a consequence, $H^{1}\left(\Sigma_{g}\right)=\mathbb{R}^{2 g}$, where Σ_{g} is the sphere with g handles.
6. (Hopf invariant) The goal of this problem is to introduce a homotopy invariant of maps $f: S^{3} \rightarrow S^{2}$, the so-called Hopf invariant, and to establish some of its properties.
(a) Let $\omega \in \Omega^{2}\left(S^{2}\right)$ be an arbitrary form with $\int_{S^{2}} \omega=1$. Since $H^{2}\left(S^{3}\right)=0$, the pull back $f^{*} \omega$ is exact. Define the Hopf invariant of f by $H(f)=\int_{S^{3}} \lambda \wedge f^{*} \omega$, where λ is a primitive of $f^{*} \omega$, i.e., $d \lambda=f^{*} \omega$. Prove that $H(f)$ is well-defined, i.e., independent of the choice of λ when ω is fixed and, furthermore, independent of the choice of ω.
(b) Evaluate the Hopf invariant for the Hopf fibration $S^{3} \rightarrow S^{2}$.
(c) Prove that $H(f)$ is homotopy invariant.

Remark. One can also show that $H(f) \in \mathbb{Z}$ for all f and $f_{0} \sim f_{1}$ iff $H\left(f_{0}\right)=H\left(f_{1}\right)$.
7. Prove that a real vector bundle over S^{1} is trivial if and only if it is orientable.

