MATH 209, MANIFOLDS II, WINTER 2011

Homework Assignment III: Linear Algebra

Throughout this assignment, we utilize the notation and conventions used in class rather than in the textbook. In particular, V is always assumed to be a real vector space of dimension n and e_{1}, \ldots, e_{n} is a basis in V. Furthermore, $A^{k}(V)=\bigwedge^{k} V^{*}$ (see Problem 7) stands for the linear space of skew-symmetric multi-linear maps $\underbrace{V \times \cdots \times V}_{k \text { times }} \rightarrow \mathbb{R}$.

1. Prove that the elements $\delta_{I}=e_{i_{1}}^{*} \wedge \cdots \wedge e_{i_{k}}^{*}$ with $I=\left\{i_{1}<\ldots<i_{k}\right\}$ introduced in class do form a basis of $A^{k}(V)=\bigwedge^{k} V^{*}$.
2. Prove that the wedge product is associative.
3. Let $\alpha_{1}, \ldots, \alpha_{n}$ be elements of V^{*}. Define the matrix $a_{i j}$ by $\alpha_{i}=\sum_{j} a_{i j} e_{j}^{*}$. Prove that $\alpha_{1} \wedge \cdots \wedge \alpha_{n}=\operatorname{det}\left(a_{i j}\right) e_{1}^{*} \wedge \cdots \wedge e_{n}^{*}$.
4. Let $F: V \rightarrow V$ be a linear map. Prove that the map of one-dimensional vector spaces $F^{*}: \bigwedge^{n} V^{*} \rightarrow \bigwedge^{n} V^{*}$ is multiplication by $\operatorname{det} F$.

Remark. Recall in this connection, that a linear map $A: E \rightarrow E$ from a onedimensional vector space to itself is always multiplication by a well-defined constant a. (This constant is defined by $A(v)=a \cdot v$ for all $v \in E$ or any particular $v \neq 0$.) On the other hand, a linear map between different onedimensional spaces is multiplication by a constant that is not well-defined, i.e., depends on the choice of bases. This explains why the determinant is well-defined for linear maps from the space to itself, but not for maps between different vector spaces of the same dimension.
5. An element $\omega \in A^{2}(V)=\bigwedge^{2} V^{*}$ is called non-degenerate or a linear symplectic form on V if $i_{v} \omega \neq 0$ for any non-zero $v \in V$. Define the matrix $A=\left(a_{i j}\right)$ by $\omega=\sum_{i, j} a_{i j} e_{i}^{*} \otimes e_{j}^{*}$. Note that A is skew-symmetric, i.e., $A^{\top}=-A$, since ω is skew-symmetric. (You may want to verify this...)
(a) Consider the map $V \rightarrow V^{*}$ given by $v \mapsto i_{v} \omega$. Prove that this map is an isomorphism if and only if ω is non-degenerate. Furthermore, A the matrix of this map in the bases $\left\{e_{i}\right\}$ and $\left\{e_{i}^{*}\right\}$. Thus, ω is non-degenerate if and only if $\operatorname{det} A \neq 0$.
(b) Prove that $n=\operatorname{dim} V$ is necessarily even, say $n=2 m$, provided that V admits a linear symplectic form.
(c) Prove that ω is non-degenerate if and only if $\omega^{m} \neq 0$ in $\bigwedge^{n} V^{*}$.
6. Consider the map $\Phi: V \otimes W^{*} \rightarrow L(W, V)$ sending $v \otimes \alpha$, where $v \in V$ and $\alpha \in W^{*}$, to the linear map $W \ni x \mapsto \alpha(x) v \in V$. Prove that Φ is an isomorphism.

Remark. Since the definition of this map does not involve any other structures, this map is canonical. (On a more formal level, canonical means an equivalence of functors...)
7. Define canonical isomorphisms between $L^{k}(V)$ and $\left(V^{*}\right)^{\otimes k}$, and between $A^{k}(V)$ and $\bigwedge^{k} V^{*}$.

