MATH 209, MANIFOLDS II, WINTER 2011

Homework Assignment III: Linear Algebra

Throughout this assignment, we utilize the notation and conventions used in class rather than in the textbook. In particular, V is always assumed to be a real vector space of dimension n and e_1, \ldots, e_n is a basis in V. Furthermore, $A^k(V) = \bigwedge^k V^*$ (see Problem 7) stands for the linear space of skew-symmetric multi-linear maps $\underbrace{V \times \cdots \times V}_{} \to \mathbb{R}$.

- 1. Prove that the elements $\delta_I = e_{i_1}^* \wedge \cdots \wedge e_{i_k}^*$ with $I = \{i_1 < \ldots < i_k\}$ introduced in class do form a basis of $A^k(V) = \bigwedge^k V^*$.
- 2. Prove that the wedge product is associative.
- **3.** Let $\alpha_1, \ldots, \alpha_n$ be elements of V^* . Define the matrix a_{ij} by $\alpha_i = \sum_j a_{ij} e_j^*$. Prove that $\alpha_1 \wedge \cdots \wedge \alpha_n = \det(a_{ij}) e_1^* \wedge \cdots \wedge e_n^*$.
- **4.** Let $F: V \to V$ be a linear map. Prove that the map of one-dimensional vector spaces $F^*: \bigwedge^n V^* \to \bigwedge^n V^*$ is multiplication by det F.

Remark. Recall in this connection, that a linear map $A \colon E \to E$ from a one-dimensional vector space to itself is always multiplication by a well-defined constant a. (This constant is defined by $A(v) = a \cdot v$ for all $v \in E$ or any particular $v \neq 0$.) On the other hand, a linear map between different one-dimensional spaces is multiplication by a constant that is not well-defined, i.e., depends on the choice of bases. This explains why the determinant is well-defined for linear maps from the space to itself, but not for maps between different vector spaces of the same dimension.

- **5.** An element $\omega \in A^2(V) = \bigwedge^2 V^*$ is called non-degenerate or a linear symplectic form on V if $i_v \omega \neq 0$ for any non-zero $v \in V$. Define the matrix $A = (a_{ij})$ by $\omega = \sum_{i,j} a_{ij} e_i^* \otimes e_j^*$. Note that A is skew-symmetric, i.e., $A^{\top} = -A$, since ω is skew-symmetric. (You may want to verify this...)
 - (a) Consider the map $V \to V^*$ given by $v \mapsto i_v \omega$. Prove that this map is an isomorphism if and only if ω is non-degenerate. Furthermore, A the matrix of this map in the bases $\{e_i\}$ and $\{e_i^*\}$. Thus, ω is non-degenerate if and only if $\det A \neq 0$.
 - (b) Prove that $n = \dim V$ is necessarily even, say n = 2m, provided that V admits a linear symplectic form.
 - (c) Prove that ω is non-degenerate if and only if $\omega^m \neq 0$ in $\bigwedge^n V^*$.
- **6.** Consider the map $\Phi: V \otimes W^* \to L(W,V)$ sending $v \otimes \alpha$, where $v \in V$ and $\alpha \in W^*$, to the linear map $W \ni x \mapsto \alpha(x)v \in V$. Prove that Φ is an isomorphism.

Remark. Since the definition of this map does not involve any other structures, this map is canonical. (On a more formal level, *canonical* means an equivalence of functors...)

7. Define canonical isomorphisms between $L^k(V)$ and $(V^*)^{\otimes k}$, and between $A^k(V)$ and $\bigwedge^k V^*$.