MATH 209, MANIFOLDS II, WINTER 2011

Homework Assignment I: One-forms and integration

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $y=x^{3}$. Calculate $f_{*}(\partial / \partial x)$ and $f^{*} d y$. Is $f_{*}(\partial / \partial x)$ smooth?
2. Let f be a smooth function on a manifold M. Show that $d f=f^{*} d y$, where y is the natural coordinate on \mathbb{R}. Furthermore, let $\left(x_{1}, \ldots, x_{n}\right)$ be a system of local coordinates on M. Prove that in local coordinates

$$
d f=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} d x_{i} .
$$

Remark. Here one has to be careful with definitions. In this problem we define the one-form $d f$ by $d f(v)=L_{v} f$. The one-forms $d x_{1}, \ldots, d x_{n}$ are defined as the basis in $T_{x}^{*} M$ dual to the basis $\partial / \partial x_{1}, \ldots \partial / \partial x_{n}$ in $T_{x} M$. (Note that alternatively one could define $d x_{i}$ by $d x_{i}(v)=L_{v} x_{i}$, where x_{i} is now thought of as a function defined on an open subset of M. It follows from the assertion of the problem that this definition is equivalent to the one through the dual basis.)
3. Let α be a one-form on a smooth connected manifold M. Recall that α is said to be exact if there exists a function f such that $\alpha=d f$. Prove that

- α is exact $\Longleftrightarrow \int_{\gamma} \alpha=0$ for any closed curve γ.

Remark. Here is a hint for part $\Leftarrow)$. The goal is to construct f such that $\alpha=d f$. Fix a reference point $x_{0} \in M$. For $x \in M$, set $f(x)=\int_{\eta} \alpha$, where η is curve connecting x_{0} to x. First show that the function f is well defined, i.e., $f(x)$ is really independent of the curve η connecting x_{0} and x, using the assumption that $\int_{\gamma} \alpha=0$. Then prove that $d f=\alpha$. (For instance, one can use local coordinates to this end.)
4. Let $\alpha=x d y$ on the plane \mathbb{R}^{2} with coordinates (x, y). Denote by S_{R}^{1} the circle of radius $R>0$ centered at the origin, oriented counter clockwise. Evaluate

$$
\int_{S_{R}^{1}} \alpha
$$

Conclude from the result that α is not exact. More generally, let γ be a closed simple curve in \mathbb{R}^{2}. What is the geometrical meaning of $\int_{\gamma} x d y$?
5. Problem 6-7 (Chapter 6) on page 152 of the textbook.

