MATH 209, MANIFOLDS II, WINTER 2011

Final

Throughout the exam all manifolds, maps, and homotopies are assumed to be smooth.

- **1.** Let D be a closed two-dimensional disk.
 - (a) Show that there is no smooth map $f: D \to \partial D$ such that $f|_{\partial D} = id$.
 - (b) Let $f: D \to \mathbb{R}^2$ be a smooth map such that the origin p = (0,0) is not in $f(\partial D)$ and the winding number $W(p, f|_{\partial D}) \neq 0$. Prove that $f^{-1}(p) \neq \emptyset$.
- **2.** Show that S^{2n} with n > 1 does not admit a symplectic structure.

3. Problem 15-7 on page 408 of the textbook. Prove, as a consequence, that $H^1(\Sigma_g) = \mathbb{R}^{2g}$, where Σ_g is the sphere with g handles.

4. Let U and V be open subsets of a manifold M and let α be a differential form on $U \cap V$. Show that there exist differential forms β on U and γ on V such that $\alpha = \beta \mid_{U \cap V} -\gamma \mid_{U \cap V}$. (This problem completes the construction of the Mayer–Vietoris exact sequence.)

5. The objective of this problem is to give a direct proof of Poincaré's lemma. Let v be a vector field on a manifold M. Assume that the flow φ_t of v is defined for all $t \in \mathbb{R}$.

- (a) Prove that $i_v \varphi_t^* \alpha = \varphi_t^* i_v \alpha$ for any differential form α .
- (b) Prove that

$$\frac{d}{dt}\varphi_t^*\alpha = L_v\varphi_t^*\alpha = \varphi_t^*L_v\alpha$$

for all $t \in \mathbb{R}$ and any differential form α .

Let now $M = \mathbb{R}^n$ and v be given by v(x) = -x, $x \in \mathbb{R}^n$. (Here we identify $T_x \mathbb{R}^n$ and \mathbb{R}^n .) Let $k \ge 1$. Consider the linear operator $\Phi_k \colon \Omega^k(\mathbb{R}^n) \to \Omega^{k-1}(\mathbb{R}^n)$ defined by

$$(\Phi_k \alpha)(w_1, \dots, w_{k-1}) = -\int_0^\infty (\varphi_t^* i_v \alpha)(w_1, \dots, w_{k-1}) dt$$

for a k-form α on \mathbb{R}^n .

- (c) Prove that the improper integral in the definition of $\Phi_k \alpha$ converges.
- (d) Complete the proof of Poincaré's lemma by showing that $d\Phi_k \alpha + \Phi_{k+1} d\alpha = \alpha$ for any k-form α on \mathbb{R}^n . (Thus, if α is closed, $\alpha = d\Phi_k \alpha$ and, hence, α is exact.) Hint: Use Part (b) and Cartan's formula!

6^{*}. (Hopf invariant) The goal of this problem is to introduce a homotopy invariant of maps $f: S^3 \to S^2$, the so-called Hopf invariant, and to establish some of its properties.

- (a) Let $\omega \in \Omega^2(S^2)$ be an arbitrary form with $\int_{S^2} \omega = 1$. Since $H^2(S^3) = 0$, the pull back $f^*\omega$ is exact. Define the Hopf invariant of f by $H(f) = \int_{S^3} \lambda \wedge f^*\omega$, where λ is a primitive of $f^*\omega$, i.e., $d\lambda = f^*\omega$. Prove that H(f) is well-defined, i.e., independent of the choice of λ when ω is fixed and, furthermore, independent of the choice of ω .
- (b) Evaluate the Hopf invariant for the Hopf fibration $S^3 \to S^2$.
- (c) Prove that H(f) is homotopy invariant.

Remark. One can also show that $H(f) \in \mathbb{Z}$ for all f and $f_0 \sim f_1$ iff $H(f_0) = H(f_1)$.