MATH 209, MANIFOLDS II, WINTER 2010

Homework Assignment VI: Orientations and integration

1. Let $F: S^{n} \rightarrow S^{n}$ be the antipodal map.
(a) Prove that F is orientation preserving when n is odd and orientation reversing when n is even.
(b) Prove that $\mathbb{R} P^{n}$ is orientable if and only if n is odd.
2. Let $F: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function. Show that F is necessarily orientation preserving at its regular points, i.e., $F^{*} d x \wedge d y=f d x \wedge d y$ with $f \geq 0$.
3. Let N be a hypersurface in M and let ω be a volume form on M.
(a) Let v be a vector field nowhere tangent to N. Prove that $\left.i_{v} \omega\right|_{N}$ is a volume form on N.
(b) Prove that $\left.i_{v} \omega\right|_{N}=\left.i_{w} \omega\right|_{N}$ if $v-w$ is tangent to N.

Remark. Assume that the hypersurface N is the boundary of M. Then the construction of Part (a) gives an alternative description of the orientation induced on N. Indeed, let v point outward and let an orientation of M be determined by ω. Then the induced orientation of $N=\partial M$ is determined by $i_{v} \omega$ and is well defined. Note also that in both (a) and (b) it suffices to have v defined only along N.
4. Let $M \subset \mathbb{R}^{3}$ be the graph of a function $z=f(x, y)$ with (x, y) lying in some bounded closed domain U of \mathbb{R}^{2}. Let \mathbf{v} be a vector field in \mathbb{R}^{3} defined on a neighborhood of M. Recall from vector calculus that the surface integral of \mathbf{v} over M is defined as

$$
\iint_{M} \mathbf{v} \cdot d \mathbf{S}=\iint_{M} \mathbf{v} \cdot \mathbf{n} d S=\iint_{U}(\mathbf{v} \cdot \mathbf{n})(x, y) \sqrt{1+\left(\partial_{x} f\right)^{2}+\left(\partial_{y} f\right)^{2}} d x d y
$$

where \mathbf{n} is the unit upward normal vector field to M. Let $\omega=d x \wedge d y \wedge d z$.
(a) Prove that $\iint_{M} \mathbf{v} \cdot d \mathbf{S}=\int_{M} i_{\mathbf{v}} \omega$, where the orientation of M is induced by ω and \mathbf{n} as in Problem 3.
(b) Prove that $F^{*} i_{\mathbf{n}} \omega=\sqrt{1+\left(\partial_{x} f\right)^{2}+\left(\partial_{y} f\right)^{2}} d x \wedge d y$, where $F: U \rightarrow M$ is the natural diffeomorphism $(x, y) \mapsto(x, y, f(x, y))$.

Remark. Since every hypersurface is locally a graph (in some orthogonal coordinates), this statement indicates that in general the integral of \mathbf{v} over a hypersurface in the sense of vector calculus is equal to the integral of $i_{\mathbf{v}} \omega$.
5. Let $\omega \in \Omega^{2}(M)$ and $u:[0,1] \times[0,1] \rightarrow M$ be a smooth map. Prove that $u^{*} \omega=$ $\omega\left(\frac{\partial u}{\partial t}, \frac{\partial u}{\partial s}\right) d t \wedge d s$ and, as a consequence,

$$
\int_{u} \omega=\int_{0}^{1} \int_{0}^{1} \omega\left(\frac{\partial u}{\partial t}, \frac{\partial u}{\partial s}\right) d t d s
$$

6. Let $\omega=x d y \wedge d z-y d x \wedge d z+z d x \wedge d y$. Evaluate $\int_{S_{R}^{2}} \omega$, where S_{R}^{2} is the sphere of radius R centered at the origin.
