MATH 209, MANIFOLDS II, WINTER 2009

Midterm
due Tuesday 2/25

1. Let X and Y be smooth vector fields on a manifold M and $\alpha \in \Omega^{*}(M)$. Prove that $L_{X}\left(i_{Y} \alpha\right)=$ $i_{[X, Y]} \alpha+i_{Y}\left(L_{X} \alpha\right)$.
2.

(a) Let α be a non-vanishing one-form on M and let ω be a two-form such that $\alpha \wedge \omega=0$. Prove that there exists a one-form λ such that $\omega=\lambda \wedge \alpha$.
(b) Let \mathcal{D} be an involutive distribution of codimension-one on M which can be given as the kernel of a non-vanishing form α, i.e., $\mathcal{D}_{x}=\operatorname{ker} \alpha_{x}$ for all $x \in M$. (In other words, \mathcal{D} is co-orientable.) Then, as we have seen in the previous homework assignment, $\alpha \wedge d \alpha=0$. By Part (a), there exists a one-form λ such that $d \alpha=\lambda \wedge \alpha$. Consider the three-form $\eta=\lambda \wedge d \lambda$. Prove that η is closed and that η is uniquely determined by \mathcal{D} up to an exact form. In other words, up to an exact three-form, η is independent of the choice of α and the choice of λ (none of which is unique).

Hints and remarks. In part (a), you may first show that there exists a vector field Z such that $\alpha(Z) \equiv 1$ and then set $\lambda=-i_{Z} \omega$. Regarding part (b), note that the distribution \mathcal{D} determines α only up to multiplication by a non-vanishing function and α determines λ up to a form $f \alpha$. By part (b), the cohomology class of η is well defined. This is the so-called Godbillion-Vey class of \mathcal{D}.
3. Let B be a smooth function on \mathbb{R}^{2} with coordinates q_{1} and q_{2}. Consider the two-form

$$
\omega=B \cdot d q_{1} \wedge d q_{2}+d p_{1} \wedge d q_{1}+d p_{2} \wedge d q_{2}
$$

on $T^{*} \mathbb{R}^{2}=\mathbb{R}^{4}$. Let also X_{H} be the Hamiltonian vector field of $H=\left(p_{1}^{2}+p_{2}^{2}\right) / 2$ on \mathbb{R}^{4} with respect to ω. Recall that X_{H} is defined by the equation $i_{X_{H}} \omega=-d H$.
(a) Prove that ω is a symplectic form.
(b) Show that

$$
X_{H}=p_{1} \partial_{q_{1}}+p_{2} \partial_{q_{2}}+B \cdot\left(p_{2} \partial_{p_{1}}-p_{1} \partial_{p_{2}}\right)
$$

(c) Prove that the projection $q(t)=\left(q_{1}(t), q_{2}(t)\right)$ of an integral curve of X_{H} to \mathbb{R}^{2} satisfies the equation $\ddot{q}=-B(q) J \dot{q}$, where J is the rotation in $\pi / 2$ counterclockwise. Furthermore, $p_{1}(t)=\dot{q}_{1}(t)$ and $p_{2}(t)=\dot{q}_{2}(t)$.
(d) Assume that B is constant. Show that the solutions of the equation from (c) are circles. Calculate the radii of these circles as a function of the energy $E=\left(p_{1}^{2}(0)+p_{2}^{2}(0)\right) / 2$ and the constant B.

Remark. By Part (c), this problem gives a Hamiltonian description of the motion of a unit charge (with unit mass) confined to a plane in the magnetic field of magnitude B, perpendicular to the plane.
4. Show that the total space of the tangent bundle $T M$ is an orientable manifold, regardless of whether M itself is orientable or not. Moreover, $T M$ carries a canonical orientation (as a manifold).
5^{*}. Let M be a closed orientable surface of genus g. Prove that there exist $2 g$ closed one-forms $\alpha_{1}, \ldots, \alpha_{2 g}$ on M such that any linear combination $a_{1} \alpha_{1}+\cdots+a_{2 g} \alpha_{2 g}$ with constant coefficients is exact if and only if $a_{1}=\ldots=a_{2 g}=0$. (Remark: in this problem you need to use the classification of closed surfaces. Note also that this is not a very easy problem although solving it does not require any advanced understanding of manifolds beyond what has been discussed in class.)

