MATH 209, MANIFOLDS II, WINTER 2009

Homework Assignment VII: De Rham cohomology and the Poincaré lemma, due Tuesday 03/11

1. Problem 15-3, page 407, of the textbook.
2. Problem $15-8$, page 408, of the textbook. Remark: in part (c) use the fact that $H^{2}\left(S^{n}\right)=$ 0 , if $n \neq 2$, which we will soon prove.
3. The main objective of this problem is to prove that $H_{c}^{*}(M)=H_{c}^{*+1}(M \times \mathbb{R})$, where M is an arbitrary manifold - as we will soon see that this is a consequential result. Here we closely follow the argument from Differential forms in algebraic topology by Bott and Tu. First let us set some notation and conventions. Denote by π the natural projection $M \times \mathbb{R} \rightarrow M$ and let t be a point in \mathbb{R}. A k-form ω on $M \times \mathbb{R}$ can be expressed as a linear combination of forms of two types: forms of the first type are $f \cdot \pi^{*} \alpha$, where $\alpha \in \Omega^{k}(M)$ (not necessarily compactly supported) and $f \in C_{c}^{\infty}(M \times \mathbb{R})$; forms of the second type are $\left(\pi^{*} \beta\right) \wedge(f d t)$, where $\beta \in \Omega^{k-1}(M)$ (not necessarily compactly supported) and $f \in C_{c}^{\infty}(M \times \mathbb{R})$.
(a) Define the "integration over the fibers" $\pi_{*}: \Omega_{c}^{*}(M \times \mathbb{R}) \rightarrow \Omega_{c}^{*-1}(M)$ by $\pi_{*} \omega=0$, when ω is of the first type, and $\pi_{*}(\omega)=\left(\int_{-\infty}^{\infty} f d t\right) \beta$ if ω is of the second type. Then π_{*} is a well-defined map. Prove that $d \pi_{*}=\pi_{*} d$, i.e., π_{*} induces a homomorphism of complexes.
(b) Fix a smooth compactly supported function $g(t)$ with $\int_{-\infty}^{\infty} g d t=1$. Define a linear map $\Phi: \Omega_{c}^{*-1}(M) \rightarrow \Omega_{c}^{*}(M \times \mathbb{R})$ by $\Phi(\alpha)=\alpha \wedge g d t$. Prove that Φ commutes with the differential d.

Our next objective is two show that π_{*} and Φ induce, in cohomology, maps that are inverse to each other.
(c) Define $K: \Omega_{c}^{*}(M \times \mathbb{R}) \rightarrow \Omega_{c}^{*-1}(M \times \mathbb{R})$ by $K(\omega)=0$ when ω is of the first type and, when $\omega=f d t \wedge \pi^{*} \beta$ is of the second type, by

$$
K(\omega)=\left(\int_{-\infty}^{t} f d t-G(t) \int_{-\infty}^{\infty} f d t\right) \cdot \beta
$$

where $G(t)=\int_{-\infty}^{t} g d t$. Prove that $\omega-\Phi \pi_{*}(\omega)=(-1)^{k-1}(d K-K d)(\omega)$ for $\omega \in$ $\Omega_{c}^{k}(M \times \mathbb{R})$.
(d) Prove, using (c), that π_{*} induces an isomorphism $H_{c}^{*}(M) \cong H_{c}^{*+1}(M \times \mathbb{R})$.
4. Derive from Problem 4 that

$$
H_{c}^{*}\left(\mathbb{R}^{n}\right)= \begin{cases}0 & \text { if } * \neq n \\ \mathbb{R} & \text { if } *=n\end{cases}
$$

This result is known as the Poincaré lemma for forms with compact support.

