MATH 209, MANIFOLDS II, WINTER 2009

Homework Assignment I: One-forms and integration, due Tuesday 1/21

1. Let $f: \mathbb{R} \to \mathbb{R}$ be given by $y = x^3$. Calculate $f_*(\partial/\partial x)$ and $f^* dy$. Is $f_*(\partial/\partial x)$ smooth?

2. Let f be a smooth function on a manifold M. Show that $df = f^*dy$, where y is the natural coordinate on \mathbb{R} . Furthermore, let (x_1, \ldots, x_n) be a system of local coordinates on M. Prove that in local coordinates

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i.$$

Remark. Here one has to be careful with definitions. In this problem we define the one-form df by $df(v) = L_v f$. The one-forms dx_1, \ldots, dx_n are defined as the basis in T_x^*M dual to the basis $\partial/\partial x_1, \ldots \partial/\partial x_n$ in $T_x M$. (Note that alternatively one could define dx_i by $dx_i(v) = L_v x_i$, where x_i is now thought of as a function defined on an open subset of M. It follows from the assertion of the problem that this definition is equivalent to the one through the dual basis.)

3. Let $\alpha = x \, dy$ on the plane \mathbb{R}^2 with coordinates (x, y). Denote by S_R^1 the circle of radius R > 0 centered at the origin, oriented counter clockwise. Evaluate

$$\int_{S^1_R} \alpha.$$

Conclude from the result that α is not exact, i.e., there exists no function f such that $\alpha = df$. More generally, let γ be a closed simple curve in \mathbb{R}^2 . What is the geometrical meaning of $\int_{\gamma} x \, dy$?

4. Let α be a one-form on a smooth connected manifold M. Recall that α is said to be exact if there exists a function f such that $\alpha = df$. Prove that

• α is exact $\iff \int_{\gamma} \alpha = 0$ for any closed curve γ .

Remark. The part \Rightarrow), which we did in class, is here only for the sake of completeness. You do not need to redo it. Here is a hint for part \Leftarrow). The goal is to construct f such that $\alpha = df$. Fix a reference point $x_0 \in M$. For $x \in M$, set $f(x) = \int_{\eta} \alpha$, where η is curve connecting x_0 to x. First show that the function f is well defined, i.e., f(x) is really independent of the curve η connecting x_0 and x, using the assumption that $\int_{\gamma} \alpha = 0$. Then prove that $df = \alpha$. (For instance, one can use local coordinates to this end.)

5. Problem 6-7 (Chapter 6) on page 152 of the textbook.