MATH 208, Fall 2013

Manifolds I

Final

1. Consider the vector fields $v(x)=v_{0}+A(x)$ and $w(x)=w_{0}+B(x)$ on \mathbb{R}^{n}, where v_{0} and w_{0} are constant vectors, and A and B are linear maps $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
a. Find the flow φ^{t} of v.
b. Find the braket $[v, w]$.
2. Let $\Sigma=\Sigma_{g} \backslash D^{2}$, where Σ_{g} is the sphere with g handles and D^{2} is a disk. Show that Σ admits an immersion into into \mathbb{R}^{2}. (It is sufficient to sketch a figure or a series of figures as a solution.)
3. Consider the map $\tilde{F}: S^{2} \rightarrow \mathbb{R}^{4}$ given by

$$
\tilde{F}(x, y, z)=\left(x^{2}-y^{2}, x y, x z, y z\right)
$$

Prove that \tilde{F} gives rise to a smooth embedding $F: \mathbb{R P}^{2} \rightarrow \mathbb{R}^{4}$.
4. Let $M^{m} \subset \mathbb{R}^{k}$ and $N^{n} \subset \mathbb{R}^{k}$ be two submanifolds of dimensions m and, respectively, n such that $m+n<k$. (For instance, M and N are two curves in \mathbb{R}^{3}.) Prover that $(x+M) \cap N=\emptyset$ for almost all, in the sense of measure theory, $x \in \mathbb{R}^{k}$. Here $x+M=\{x+y \mid y \in M\}$.
5. Denote by M_{n} the vector space of real $n \times n$ matrices and let P_{n} be the vector space of real symmetric $n \times n$ matrices. Consider the map $F: \mathrm{M}_{n} \rightarrow P_{n}$ given by $F(A)=A A^{T}$.
a. Show that $D F_{I}(X)=X+X^{T}$ and that $I \in \mathrm{M}_{n}$ is a regular point of F. (Would I still be a regular point if we replaced the target space P_{n} by M_{n} ?)
b. Show that $I \in P_{n}$ is a regular value of F. Thus the orthogonal group $\mathrm{O}(n)=\left\{A \in \mathrm{M}_{n} \mid A A^{T}=I\right\}$ is a smooth submanifold of M_{n}. Find $\operatorname{dim} \mathrm{O}(n)$.
c. Show that $T_{I} \mathrm{O}(n)$ is the space of all skew-symmetric matrices, i.e., $T_{I} \mathrm{O}(n)=\left\{X \in \mathrm{M}_{n} \mid X+X^{T}=0\right\}$. (This space is usually denoted by so(n).)
6. Let v be a vector field on M. Denote by φ^{t} the (local) flow of v.
a. Let $F: M \rightarrow N$ be a diffeomorphism. Show that $F \varphi^{t} F^{-1}$ is the (local) flow of $F_{*} v$. (Hint: prove that $F\left(\varphi^{t}\left(F^{-1}(q)\right)\right)$ is the integral curve of $F_{*} v$ through $q \in N$.)
b. Let $F: M \rightarrow M$ be a diffeomorphism. Prove that $F_{*} v=v$ if and only if $F \varphi^{t}=\varphi^{t} F$ for all t.
7. Two smooth submanifolds M_{0} and M_{1} of N are said to be transverse if $T_{p} N=T_{p} M_{0}+T_{p} M_{1}$ for all $p \in M_{0} \cap M_{1}$. Prove that $M_{0} \cap M_{1}$ is a smooth submanifold of N of dimension $\operatorname{dim} M_{0}+\operatorname{dim} M_{1}-\operatorname{dim} N$, whenever M_{0} and M_{1} are transverse.

