MATH 208, Fall 2012

Manifolds I, Midterm

1. Let M be a smooth manifold. Prove that for any continuous function $f: M \rightarrow \mathbb{R}$ and any $\epsilon>0$, there exists a smooth function h such that $\sup _{x \in M}|f(x)-h(x)|<\epsilon$. (In other words, every continuous function can be C^{0}-approximated by smooth functions.)
Hint: You may consider, for instance, using the Weierstrass approximating theorem asserting that every continuous function on a closed cube (or any compact set) in \mathbb{R}^{n} can be approximated by polynomials.
2. Let M be a closed (i.e., compact without boundary) manifold of dimension n. Prove that there is no immersion $M \rightarrow \mathbb{R}^{n}$.
3. For which $c \in \mathbb{R}$, the subset given by $x_{1}^{2}+x_{1}^{3}-x_{2}^{2}+x_{3} x_{4}=c$ is a smooth submanifold of \mathbb{R}^{4} ?
4. Denote by M_{n} the vector space of real $n \times n$ matrices.
(a) Prove that for any $X \in \mathrm{M}_{n}$ we have

$$
\left.\frac{d}{d t} \operatorname{det}(I+t X)\right|_{t=0}=\operatorname{tr} X
$$

(b) Show that 1 is a regular value of the function det: $\mathrm{M}_{n} \rightarrow \mathbb{R}$. (Hint: reduce the problem to checking that $I \in \mathrm{M}_{n}$ is a regular point and then use (a).) As a consequence, prove that $\operatorname{SL}(n, \mathbb{R})=\left\{A \in \mathrm{M}_{n} \mid \operatorname{det} A=1\right\}$ is a smooth hypersurface in M_{n}.
5. Consider the following vector fields on \mathbb{R}^{3} :

$$
v=\frac{\partial}{\partial x} \quad \text { and } \quad w=x \frac{\partial}{\partial z}+\frac{\partial}{\partial y}
$$

(a) Find $[v, w]$.
(b) Assume that f is a smooth function on \mathbb{R}^{3} such that

$$
L_{v} f=L_{w} f=0
$$

at every point. Prove that $f=$ const. Hint: first show that $L_{u} f=0$ for any vector u. Then use (and prove) that

$$
f(\gamma(1))-f(\gamma(0))=\int_{0}^{1} L_{\dot{\gamma}(t)} f d t
$$

$$
\text { for any smooth curve } \gamma:[0,1] \rightarrow \mathbb{R}^{3} \text {. }
$$

6. Let $p \in M$ be a regular point of a smooth function $f: M \rightarrow \mathbb{R}$. Prove that there is a coordinate system $\left(x_{1}, \ldots, x_{n}\right)$ near p such that $f(x)=f(p)+x_{1}$.
7. Let $p \in M$ be a critical point of a smooth function $f: M \rightarrow \mathbb{R}$. The Hessian $d_{p}^{2} f: T_{p} M \times T_{p} M \rightarrow R$ of f at p is defined as follows. Let v and w be two vectors in $T_{p} M$. Extend these vectors to vector fields \tilde{v} and \tilde{w} on a neighborhood of p (i.e., \tilde{v} and \tilde{w} are vector fields near p with $\tilde{v}(p)=v$ and $\tilde{w}(p)=w)$ and set

$$
d_{p}^{2} f(v, w)=L_{\tilde{v}} L_{\tilde{w}} f .
$$

(a) Prove that the extensions \tilde{v} and \tilde{w} exist. Prove that $d_{p}^{2} f(v, w)$ is well defined, i.e., independent of the choice of extensions \tilde{v} and \tilde{w}. (Why is the condition that p is a critical point essential?) Show that the bilinear form $d_{p}^{2} f$ is symmetric.
(b) Find an expression for $d_{p}^{2} f$ in local coordinates.
(c) Prove that $d_{p}^{2} f(v) \geq 0$ for all $v \in T_{p} M$, when p is a local minimum of f. Conversely (almost), prove that p is a local minimum when $d_{p}^{2} f$ is positive definite, i.e., $d_{p}^{2} f(v)>0$ for all non-zero $v \in T_{p} M$.

