MATH 208, Fall 2011

Manifolds I

Final

1. Consider two vector fields $v(x) = v_0 + A(x)$ and $w(x) = w_0 + B(x)$ on \mathbb{R}^n , where v_0 and w_0 are constant vectors, and A and B are linear maps $\mathbb{R}^n \to \mathbb{R}^n$.

a. Find the flow φ^t of v.

b. Find the braket [v, w].

2. Let $\Sigma = \Sigma_g \setminus D^2$, where Σ_g is the sphere with g handles and D^2 is a disk. Show that Σ admits an immersion into into \mathbb{R}^2 . (It is sufficient to sketch a figure or a series of figures as a solution.)

3. Consider the map $\tilde{F} \colon S^2 \to \mathbb{R}^4$ given by

$$\ddot{F}(x, y, z) = (x^2 - y^2, xy, xz, yz).$$

Prove that \tilde{F} gives rise to a smooth embedding $F \colon \mathbb{RP}^2 \to \mathbb{R}^4$.

4. Let M be a submanifold in $N \times P$, where N and P are arbitrary manifolds. Show that for almost all $y \in P$ the intersection $M \cap (N \times \{y\})$ is a smooth submanifold in $N \times \{y\} = N$.

5. Two smooth submanifolds M_0 and M_1 of N are said to be transverse if $T_pN = T_pM_0 + T_pM_1$ for all $p \in M_0 \cap M_1$. Prove that $M_0 \cap M_1$ is a smooth submanifold of N of dimension dim M_0 + dim M_1 - dim N, whenever M_0 and M_1 are transverse.

6. Denote by M_n the vector space of real $n \times n$ matrices and let P_n be the vector space of real symmetric $n \times n$ matrices. Consider the map $F: M_n \to P_n$ given by $F(A) = AA^T$.

- **a.** Show that $DF_I(X) = X + X^T$ and that $I \in M_n$ is a regular point of F. (Would I still be a regular point if we replaced the target space P_n by M_n ?)
- **b.** Show that $I \in P_n$ is a regular value of F. Thus the orthogonal group $O(n) = \{A \in M_n \mid AA^T = I\}$ is a smooth submanifold of M_n . Find dim O(n).
- **c.** Show that $T_I O(n)$ is the space of all skew-symmetric matrices, i.e., $T_I O(n) = \{X \in M_n \mid X + X^T = 0\}$. (This space is usually denoted by so(n).)

- 7. Let v be a vector field on M. Denote by φ^t the (local) flow of v.
 - **a.** Let $F: M \to N$ be a diffeomorphism. Show that $F\varphi^t F^{-1}$ is the (local) flow of F_*v . (Hint: prove that $F(\varphi^t(F^{-1}(q)))$ is the integral curve of F_*v through $q \in N$.)
 - **b.** Let $F: M \to M$ be a diffeomorphism. Prove that $F_*v = v$ if and only if $F\varphi^t = \varphi^t F$ for all t.

8. Let M be a connected manifold without boundary. Show that for any two points p and q in M, there exists a diffeomorphism $F: M \to M$ such that F(p) = q. In other words, the group of diffeomorphisms of M acts transitively on M. (Hint: First reduce the problem to the case where p and q are contained in a relatively compact coordinate neighborhood U diffeomorphic to an open ball. Then show that there exists a vector field v on M, vanishing outside U and hence complete, such that $\varphi^1(p) = q$, where φ^t is the flow of v.)

2