Mathematics 19B; Winter 2002; V. Ginzburg Practice Final, Solutions

1. For each of the ten questions below, state whether the assertion is true or false:
(a) To evaluate $\int \sqrt{a^{2}-x^{2}} d x$ one should use the trigonometric substitution $x=a \sin \theta$ with $-\pi / 2 \leq \theta \leq \pi / 2$. Answer: \mathbf{T}.
(b) $\int \sinh x d x=-\cosh x+C$. Answer: F. $\int \sinh x d x=\cosh x+C$.
(c) If $a_{n} \rightarrow 0$, then the series $\sum_{n=1}^{\infty} a_{n}$ converges. Answer: F. Example: $\sum_{n=1}^{\infty} \frac{1}{n}$.
(d) $\int_{0}^{1} \frac{d x}{x^{2}}$ converges. Answer: \mathbf{F}.
(e) To find the integral $\int x^{3} e^{x} d x$ one should apply the method of integration by parts. Answer: T.
(f) Assume that $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L$ exists and $L \leq 1$. Then the series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely. Answer: F. To guarantee absolute convergence one should have $L<1$.
(g) Assume that b_{n} is a decreasing sequence, $b_{n}>0$ for all n, and $\lim _{n \rightarrow \infty} b_{n}=$ 0 . Then the series $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ converges. Answer: T.
(h) $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots$ for all $x \neq 0$. Answer: \mathbf{F}. Only for $|x|<1$.
(i) $\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$ for all x. Answer: T.
(j) Let a_{n} be a bounded monotonic sequence. Then a_{n} converges. Answer: T.
2. Evaluate the following indefinite integrals:
(a) $\int \frac{x}{x^{2}-5 x+6} d x$. Solution: Solving $x^{2}-5 x+6=0$ we find that

$$
x^{2}-5 x+6=(x-3)(x-2) .
$$

Now we look for A and B such that

$$
\frac{x}{x^{2}-5 x+6}=\frac{A}{x-3}+\frac{B}{x-2} .
$$

This is equivalent to $A(x-2)+B(x-3)=x$ or

$$
\begin{array}{r}
A+B=1 \\
2 A+3 C=0
\end{array}
$$

Solving for A and B, we obtain $A=3$ and $B=-2$. Hence,

$$
\frac{x}{x^{2}-5 x+6}=\frac{3}{x-3}-\frac{2}{x-2}
$$

and

$$
\begin{aligned}
\int \frac{x}{x^{2}-5 x+6} d x & =\int\left(\frac{3}{x-3}-\frac{2}{x-2}\right) d x \\
& =3 \ln |x-3|-2 \ln |x-2|+C .
\end{aligned}
$$

(b) $\int x e^{2 x+1} d x$. Solution: Let us use the method of integration by parts. Set $u(x)=x$ and $v^{\prime}(x)=e^{2 x+1}$. Then $u^{\prime}(x)=1$ and $v(x)=\frac{1}{2} e^{2 x+1}$. Thus,

$$
\begin{aligned}
\int x e^{2 x+1} d x & =\frac{x}{2} e^{2 x+1}-\int \frac{1}{2} e^{2 x+1} d x \\
& =\frac{x}{2} e^{2 x+1}-\frac{1}{4} e^{2 x+1}+C .
\end{aligned}
$$

(c) $\int \tan ^{3} x d x$. Solution: Recall that $\tan ^{2} x=\sec ^{2} x-1$. Thus

$$
\begin{aligned}
\int \tan ^{3} x d x & =\int \tan x \tan ^{2} x d x \\
& =\int \tan x\left(\sec ^{2} x-1\right) d x \\
& =\int \tan x \sec ^{2} x d x-\int \tan x d x
\end{aligned}
$$

To evaluate the first integral we use the substitution $u=\tan x$ (so that $\left.d u=u^{\prime} d x=\sec ^{2} x d x\right)$. Thus

$$
\int \tan x \sec ^{2} x d x=\int u d u=\frac{u^{2}}{2}+C=\frac{\tan ^{2} x}{2}+C .
$$

The second integral is evaluated as follows:

$$
\begin{aligned}
\int \tan x d x & =\int \frac{\sin x}{\cos x} d x \quad \text { substitute } u=\cos x \\
& =-\int \frac{d u}{u} \\
& =-\ln |u|+C \\
& =\ln |\sec x|+C
\end{aligned}
$$

Combining these two integrals we obtain:

$$
\int \tan ^{3} x d x=\frac{\tan ^{2} x}{2}-\ln |\sec x|+C
$$

Alternatively, we can write the integral as

$$
\int \frac{\sin ^{3} x}{\cos ^{3} x} d x=\int \frac{\sin ^{2} x}{\cos ^{3} x} \sin x d x
$$

and then use the substitution $u=\cos x$. This would lead to a different expression for the integral.
3. Evaluate the following definite integrals:
(a) $\int_{0}^{3} \frac{x}{\sqrt{x^{2}+16}} d x$. Solution: Let $u=x^{2}+16$. Then $d u=2 x d x$ and

$$
\int_{0}^{3} \frac{x}{\sqrt{x^{2}+16}} d x=\frac{1}{2} \int_{16}^{25} \frac{d u}{\sqrt{u}}=\left.\sqrt{u}\right|_{16} ^{25}=5-4=1 .
$$

Alternatively we could use the trigonometric substitution $x=4 \tan \theta$.
(b) $\int_{0}^{\frac{\pi}{2}} \cos ^{6} x \sin ^{3} x d x$. Solution: We rewrite the integral as

$$
\int_{0}^{\frac{\pi}{2}} \cos ^{6} x \sin ^{3} x d x=\int_{0}^{\frac{\pi}{2}} \cos ^{6} x\left(1-\cos ^{2} x\right) \sin x d x
$$

Let $u=\cos x$ so that $d u=-\sin x d x$. Then

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \cos ^{6} x\left(1-\cos ^{2} x\right) \sin x d x & =-\int_{1}^{0} u^{6}\left(1-u^{2}\right) d u \\
& =\int_{0}^{1} u^{6}\left(1-u^{2}\right) d u \\
& =\left.\left(\frac{u^{7}}{7}-\frac{u^{9}}{9}\right)\right|_{0} ^{1} \\
& =\frac{1}{7}-\frac{1}{9}=\frac{2}{63}
\end{aligned}
$$

(c) $\int_{0}^{\pi^{2}} \sin \sqrt{x} d x$. Solution: Let $u=\sqrt{x}$ so that $x=u^{2}$ and $d x=2 u d u$. Then

$$
\int_{0}^{\pi^{2}} \sin \sqrt{x} d x=2 \int_{0}^{\pi} u \sin u d u
$$

Integrating by parts we obtain,

$$
\begin{aligned}
\int_{0}^{\pi} u \sin u d u & =-\left.u \cos u\right|_{0} ^{\pi}+\int_{0}^{\pi} \cos u d u \\
& =\pi+\left.\sin u\right|_{0} ^{\pi}=\pi
\end{aligned}
$$

Hence,

$$
\int_{0}^{\pi^{2}} \sin \sqrt{x} d x=2 \pi
$$

4. Find the volume of the solid obtained by rotating the region bounded by $y=$ $\sqrt{4-x}, x=0, y=0$ about the x-axis.
Solution: The volume of the region bounded by $y=f(x)$ with $a \leq x \leq b$ is given by

$$
V=\pi \int_{a}^{b} f(x)^{2} d x
$$

For the region under consideration $a=1$ and b is the solution to $f(x)=0$, i.e., $b=4$. Thus

$$
V=\pi \int_{0}^{4}(\sqrt{4-x})^{2} d x=\pi \int_{0}^{4}(4-x) d x=\left.\pi\left(4 x-\frac{x^{2}}{2}\right)\right|_{0} ^{4}=8 \pi
$$

5. Evaluate the following improper integral: $\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x$.

Solution: By definition,

$$
\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x=\lim _{r \rightarrow \infty} \int_{1}^{r} \frac{\ln x}{x^{2}} d x
$$

Setting $u=\ln x$ and $v^{\prime}=1 / x^{2}$ (so that $v=-1 / x$) we integrate by parts

$$
\begin{aligned}
\int_{1}^{r} \frac{\ln x}{x^{2}} d x & =-\left.\frac{\ln x}{x}\right|_{1} ^{r}+\int_{1}^{r} \frac{d x}{x^{2}} \\
& =-\frac{\ln r}{r}+1-\frac{1}{r}
\end{aligned}
$$

By L'Hostpital's rule $\frac{\ln r}{r} \rightarrow 0$ as $r \rightarrow \infty$. Thus

$$
\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x=1
$$

6. Test the following series for convergence, absolute convergence, or divergence:
(a) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n(\ln n)^{3}}$. Solution: By the alternating series test this series converges. To test for absolute convergence we need to check if the series of absolute values $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{3}}$ converges. Let us apply the integral test: the series in question converges if and only if the improper integral

$$
\int_{2}^{\infty} \frac{d x}{x(\ln x)^{3}}
$$

converges. Set $u=\ln x$. Then

$$
\int_{2}^{\infty} \frac{d x}{x(\ln x)^{3}}=\int_{\ln 2}^{\infty} \frac{d u}{u^{3}}
$$

The later integral converges and hence the series converges. (Note also that alternatively we can conclude that the series is converging from its absolute convergence.)
(b) $\sum_{n=0}^{\infty}(-1)^{n} \sin n$. Solution: This series diverges since $(-1)^{n} \sin n$ does not go to zero (in fact does not have a limit at all) as $n \rightarrow \infty$.
(c) $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}$. Solution: Let us apply the root test:

$$
\sqrt[n]{\left(\frac{n}{n+1}\right)^{n^{2}}}=\left(\frac{n}{n+1}\right)^{n}=\frac{1}{\left(\frac{n+1}{n}\right)^{n}}=\frac{1}{\left(1+\frac{1}{n}\right)^{n}} \rightarrow \frac{1}{e}
$$

for $\left(1+\frac{1}{n}\right)^{n} \rightarrow e$ as $n \rightarrow \infty$. Since $1 / e<1$, the series converges (absolutely).
7. Find the Maclaurin series of the function $y=\frac{1}{\sqrt{1-x}}$ and determine its radius of convergence.
Solution: Let us find the derivatives of $f(x)=\frac{1}{\sqrt{1-x}}=(1-x)^{-\frac{1}{2}}$:

$$
\begin{aligned}
f(x) & =(1-x)^{-\frac{1}{2}} \\
f^{\prime}(x) & =\frac{1}{2}(1-x)^{-\frac{3}{2}} \\
f^{\prime \prime}(x) & =\frac{1}{2} \cdot \frac{3}{2}(1-x)^{-\frac{5}{2}} \\
f^{(3)}(x) & =\frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2}(1-x)^{-\frac{7}{2}} \\
& \cdots \\
f^{(n)}(x) & =\frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2} \cdots \frac{2 n-1}{2}(1-x)^{-\frac{2 n+1}{2}} \quad \text { for } n \geq 1 \\
& =\frac{1 \cdot 2 \cdots \cdot(2 n-1)}{2^{n}}(1-x)^{-\frac{2 n+1}{2}} \quad \text { for } n \geq 1 .
\end{aligned}
$$

Thus we have $f(0)=1$ and

$$
f^{(n)}(0)=\frac{1 \cdot 2 \cdots(2 n-1)}{2^{n}}
$$

for $n \geq 1$. Recall that the the Maclaurin series has the form

$$
\sum_{0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{(3)}(0)}{3!} x^{3}+\ldots
$$

For the function in question, we obtain

$$
1+\sum_{n=1}^{\infty} \frac{1 \cdot 2 \cdots(2 n-1)}{2^{n} n!} x^{n} .
$$

To determine the radius of convergence we use the ratio test. After all cancelations, we have

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{1}{2} \cdot \frac{2 n+1}{n+1}|x| \rightarrow|x| \quad \text { as } n \rightarrow \infty .
$$

Hence, the series converges (absolutely) if $|x|<1$ and diverges if $|x|>1$. The radius of convergence is $R=1$.

