Mathematics 19B; Winter 2002; V. Ginzburg Practice Final

- 1. For each of the ten questions below, state whether the assertion is *true* or *false*:
 - (a) To evaluate $\int \sqrt{a^2 x^2} \, dx$ one should use the trigonometric substitution $x = a \sin \theta$ with $-\pi/2 \le \theta \le \pi/2$.
 - (b) $\int \sinh x \, dx = -\cosh x + C.$
 - (c) If $a_n \to 0$, then the series $\sum_{n=1}^{\infty} a_n$ converges.
 - (d) $\int_0^1 \frac{dx}{r^2}$ converges.
 - (e) To find the integral $\int x^3 e^x dx$ one should apply the method of integration by parts.
 - (f) Assume that $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L$ exists and $L \leq 1$. Then the series $\sum_{n=1}^{\infty} a_n$ converges absolutely.
 - (g) Assume that b_n is a decreasing sequence, $b_n > 0$ for all n, and $\lim_{n\to\infty} b_n = 0$. Then the series $\sum_{n=1}^{\infty} (-1)^n b_n$ converges.
 - (h) $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$ for all $x \neq 0$.
 - (i) $\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$ for all x.
 - (j) Let a_n be a bounded monotonic sequence. Then a_n converges.
- 2. Evaluate the following indefinite integrals:
 - (a) $\int \frac{x}{x^2-5x+6} dx$,
 - (b) $\int x e^{2x+1} dx$,
 - (c) $\int \tan^3 x \, dx$.

3. Evaluate the following definite integrals:

- (a) $\int_0^3 \frac{x}{\sqrt{x^2+16}} dx$, (b) $\int_0^{\frac{\pi}{2}} \cos^6 x \sin^3 x dx$, (c) $\int_0^{\pi^2} \sin \sqrt{x} dx$.
- 4. Find the volume of the solid obtained by rotating the region bounded by $y = \sqrt{4-x}$, x = 0, y = 0 about the x-axis.
- 5. Evaluate the following improper integral: $\int_1^\infty \frac{\ln x}{x^2} dx$.

- 6. Test the following series for convergence, absolute convergence, or divergence:
 - (a) $\sum_{n=2}^{\infty} \frac{(-1)^n}{n(\ln n)^3}$,
 - (b) $\sum_{n=0}^{\infty} (-1)^n \sin n$,
 - (c) $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$
- 7. Find the Maclaurin series of the function $y = \frac{1}{\sqrt{1-x}}$ and determine its radius of convergence.