Mathematics 19B; Winter 2002; V. Ginzburg Practice Final

1. For each of the ten questions below, state whether the assertion is true or false:
(a) To evaluate $\int \sqrt{a^{2}-x^{2}} d x$ one should use the trigonometric substitution $x=a \sin \theta$ with $-\pi / 2 \leq \theta \leq \pi / 2$.
(b) $\int \sinh x d x=-\cosh x+C$.
(c) If $a_{n} \rightarrow 0$, then the series $\sum_{n=1}^{\infty} a_{n}$ converges.
(d) $\int_{0}^{1} \frac{d x}{x^{2}}$ converges.
(e) To find the integral $\int x^{3} e^{x} d x$ one should apply the method of integration by parts.
(f) Assume that $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L$ exists and $L \leq 1$. Then the series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely.
(g) Assume that b_{n} is a decreasing sequence, $b_{n}>0$ for all n, and $\lim _{n \rightarrow \infty} b_{n}=$ 0 . Then the series $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ converges.
(h) $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots$ for all $x \neq 0$.
(i) $\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$ for all x.
(j) Let a_{n} be a bounded monotonic sequence. Then a_{n} converges.
2. Evaluate the following indefinite integrals:
(a) $\int \frac{x}{x^{2}-5 x+6} d x$,
(b) $\int x e^{2 x+1} d x$,
(c) $\int \tan ^{3} x d x$.
3. Evaluate the following definite integrals:
(a) $\int_{0}^{3} \frac{x}{\sqrt{x^{2}+16}} d x$,
(b) $\int_{0}^{\frac{\pi}{2}} \cos ^{6} x \sin ^{3} x d x$,
(c) $\int_{0}^{\pi^{2}} \sin \sqrt{x} d x$.
4. Find the volume of the solid obtained by rotating the region bounded by $y=$ $\sqrt{4-x}, x=0, y=0$ about the x-axis.
5. Evaluate the following improper integral: $\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x$.
6. Test the following series for convergence, absolute convergence, or divergence:
(a) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n(\ln n)^{3}}$,
(b) $\sum_{n=0}^{\infty}(-1)^{n} \sin n$,
(c) $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}$
7. Find the Maclaurin series of the function $y=\frac{1}{\sqrt{1-x}}$ and determine its radius of convergence.
