Mathematics 19B; Winter 2002; V. Ginzburg Practice Midterm II, Solutions

1. For each of the ten questions below, state whether the assertion is true or false:
(a) The volume of the solid obtained by rotating the region bounded by $y=$ $f(x), x=a$, and $x=b$ about the x-axis is equal to $\pi \int_{a}^{b} f(x)^{2} d x$. Answer: T.
(b) The work done in moving the object from a to b is equal to $\int_{a}^{b} f(x) d x$, where $f(x)$ is the force. Answer: T.
(c) The integration by parts formula reads

$$
\int f^{\prime}(x) g(x) d x=f(x) g(x)+\int f(x) g^{\prime}(x) d x
$$

Answer: F: $\int f^{\prime}(x) g(x) d x=f(x) g(x)-\int f(x) g^{\prime}(x) d x$.
(d) $\int \tan x d x=\ln (\sec x)+C$. Answer: $\mathbf{F}: \int \tan x d x=\ln |\sec x|+C$.
(e) The average value of a function $y=f(x)$ on the interval $[a, b]$ is $\int_{a}^{b} f(x) d x$. Answer: F: The average is $\frac{1}{b-a} \int_{a}^{b} f(x) d x$.
(f) To find the integral $\int e^{x} \sin x d x$ one should apply the method of integration by parts. Answer: T.
(g) $\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$. Answer: T.
(h) To evaluate $\int \sqrt{x^{2}-a^{2}} d x$ one should use the trigonometric substitution $x=a \sin \theta$. Answer: \mathbf{F} : The correct substitution is $x=a \sec \theta$ (where $0 \leq \theta<\pi / 2$ or $\pi \leq \theta 3 \pi / 2)$.
(i) $\int \ln x d x=x \ln x+C$. Answer: F: $\int \ln x d x=x \ln x-x+C$
(j) $\int \sec x d x=\ln |\sec x+\tan x|+C$. Answer: T.
2. Evaluate the following indefinite integrals:
(a) $\int \frac{\sin \sqrt{x}}{\sqrt{x}} d x$. Solution: Let us use the substitution $u=\sqrt{x}$. Then $d u=\frac{d x}{2 \sqrt{x}}$

$$
\begin{aligned}
\int \frac{\sin \sqrt{x}}{\sqrt{x}} d x & =2 \int \sin u d u \\
& =-2 \cos u+C \\
& =-2 \cos \sqrt{x}+C
\end{aligned}
$$

(b) $\int x^{2} \ln x d x$. Solution: Let us use the method of integration by parts. Set $f(x)=\ln x$ and $g^{\prime}(x)=x^{2}$. Then $f^{\prime}(x)=1 / x$ and $g(x)=x^{3} / 3$. Thus,

$$
\begin{aligned}
\int x^{2} \ln x d x & =\frac{x^{3} \ln x}{3}-\int \frac{x^{3}}{3}(\ln x)^{\prime} d x \\
& =\frac{x^{3} \ln x}{3}-\int \frac{x^{3}}{3} \cdot \frac{1}{x} d x \\
& =\frac{x^{3} \ln x}{3}-\int \frac{x^{2}}{3} d x \\
& =\frac{x^{3} \ln x}{3}-\frac{x^{3}}{9}+C .
\end{aligned}
$$

(c) $\int \sin ^{2} x \cos ^{2} x d x$. Solution: We use half-angle formulas:

$$
\begin{aligned}
\sin ^{2} x & =\frac{1}{2}(1-\cos 2 x) \\
\cos ^{2} x & =\frac{1}{2}(1+\cos 2 x)
\end{aligned}
$$

Then

$$
\begin{aligned}
\sin ^{2} x \cos ^{2} x & =\frac{1}{4}(1-\cos 2 x)(1+\cos 2 x) \\
& =\frac{1}{4}\left(1-\cos ^{2} 2 x\right) \\
& =\frac{1}{4}\left(1-\frac{1}{2}(1+\cos 4 x)\right) \\
& =\frac{1}{8}(1-\cos 4 x) .
\end{aligned}
$$

Therefore,

$$
\int \sin ^{4} x d x=\int \frac{1}{8}(1-\cos 4 x) d x=\frac{x}{8}-\frac{1}{32} \sin 4 x+C .
$$

(d) $\int \frac{x^{2}}{\sqrt{4-x^{2}}} d x$. Solution: We use the trigonometric substitution $x=2 \sin \theta$, where $-\pi / 2 \leq \theta \leq \pi / 2$. Then $d x=2 \cos \theta d \theta$ and $\sqrt{4-x^{2}}=2 \cos \theta$. Hence,

$$
\begin{aligned}
\int \frac{x^{2}}{\sqrt{4-x^{2}}} d x & =\int \frac{4 \sin ^{2} \theta}{2 \cos \theta} 2 \cos \theta d \theta \\
& =4 \int \sin ^{2} \theta d \theta \\
& =2 \int(1-\cos 2 \theta) d \theta \\
& =2 \theta-\sin 2 \theta+C \\
& =2 \theta-2 \sin \theta \cos \theta+C
\end{aligned}
$$

Furthermore, since $x=2 \sin \theta$, we have $\cos \theta=\frac{\sqrt{4-x^{2}}}{2}$. Hence,

$$
\int \frac{x^{2}}{\sqrt{4-x^{2}}} d x=2 \sin ^{-1}\left(\frac{x}{2}\right)-\frac{x \sqrt{4-x^{2}}}{2}+C
$$

(e) $\int \frac{3 x^{2}-7 x-2}{x^{3}-x} d x$. Solution: First observe that $x^{3}-x=x(x-1)(x+1)$. We need to find A, B, and C such that the integrand decomposes as

$$
\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1}=\frac{3 x^{2}-7 x-2}{x^{3}-x} .
$$

This is equivalent to

$$
A(x-1)(x+1)+B x(x+1)+C x(x-1)=3 x^{2}-7 x-2 .
$$

Expanding the left hand side, we obtain

$$
(A+B+C) x^{2}+(B-C) x-A=3 x^{2}-7 x-2
$$

Thus, we have the following system of equations:

$$
\begin{aligned}
A+B+C & =3 \\
B-C & =-7 \\
-A & =-2
\end{aligned}
$$

which yields $A=2, B=-3$, and $C=4$. Hence,

$$
\frac{3 x^{2}-7 x-2}{x^{3}-x}=\frac{2}{x}-\frac{3}{x-1}+\frac{4}{x+1}
$$

and

$$
\int \frac{3 x^{2}-7 x-2}{x^{3}-x} d x=2 \ln |x|-3 \ln |x-1|+4 \ln |x+1|+C .
$$

(f) $\int \frac{d x}{x\left(x^{x}+1\right)} d x$. Solution: We look for a decomposition of the integrand of the form

$$
\frac{A}{x}+\frac{B x+C}{x^{2}+1}=\frac{1}{x\left(x^{2}+1\right)} .
$$

which is equivalent to

$$
A\left(x^{2}+1\right)+(B x+C) x=1
$$

As above, expanding the left hand side and solving for A, B, and C, we obtain: $A=1, B=-1$, and $C=0$. Hence,

$$
\frac{1}{x\left(x^{2}+1\right)}=\frac{1}{x}-\frac{x}{x^{2}+1} .
$$

Integrating, we conclude that

$$
\int \frac{d x}{x\left(x^{2}+1\right)} d x=\ln |x|-\frac{1}{2} \ln \left(x^{2}+1\right)+C=\ln \frac{|x|}{\sqrt{x^{2}+1}}+C .
$$

3. Evaluate the following definite integrals:
(a) $\int_{0}^{\frac{\pi}{2}} e^{\sin x} \cos x d x$. Solution: Let $u=\sin x$. Then

$$
\int_{0}^{\frac{\pi}{2}} e^{\sin x} \cos x d x=\int_{0}^{1} e^{u} d u=e-1
$$

(b) $\int_{0}^{1} x \tan ^{-1} x d x$. Solution: Let $u=\tan ^{-1} x$ and $d v=x d x$. Then $d u=$ $\frac{d x}{1+x^{2}}$ and $v=x^{2} / 2$. Integrating by parts we have

$$
\int x \tan ^{-1} x d x=\frac{x^{2} \tan ^{-1} x}{2}-\frac{1}{2} \int \frac{x^{2}}{1+x^{2}} d x
$$

Furthermore, $\frac{x^{2}}{1+x^{2}}=1-\frac{1}{1+x^{2}}$, and hence

$$
\int \frac{x^{2}}{1+x^{2}} d x=x-\tan ^{-1} x+C
$$

As a result,

$$
\int_{0}^{1} x \tan ^{-1} x d x=\left.\left(\frac{x^{2} \tan ^{-1} x}{2}-\frac{x}{2}+\frac{1}{2} \tan ^{-1} x\right)\right|_{0} ^{1}=\frac{\pi}{4}-\frac{1}{2}
$$

(c) $\int_{-1}^{1} x^{3} \sqrt{x^{2}+4} d x$. Solution: We could use the trigonometric substitution $x=2 \tan \theta$, where $-\pi / 2<\theta<\pi / 2$. However, there is a simpler solution: the integrand is an odd function and the interval is symmetric. Hence, $\int_{-1}^{1} x^{3} \sqrt{x^{2}+4} d x=0$.
(d) $\int_{-1}^{4} \frac{x-19}{x^{2}-3 x-10} d x$. Solution: First observe that $x^{2}-3 x-10=(x+2)(x-5)$. We need to find A and B such that the integrand decomposes as

$$
\frac{A}{x+2}+\frac{B}{x-5}=\frac{x-19}{x^{2}-3 x-10}
$$

This is equivalent to

$$
A(x-5)+B(x+2)=x-19
$$

Expanding the left hand side, we obtain

$$
(A+B) x+(-5 A+2 B)=x-19
$$

Thus, we have the system of equations:

$$
\begin{aligned}
A+B & =1 \\
-5 A+2 B & =-19
\end{aligned}
$$

which yields $A=3$ and $B=-2$. Hence,

$$
\frac{x-19}{x^{2}-3 x-10}=\frac{3}{x+2}-\frac{2}{x-5}
$$

and

$$
\int_{-1}^{4} \frac{x-19}{x^{2}-3 x-10} d x=\left.(3 \ln |x+2|-2 \ln |x-5|)\right|_{-1} ^{4}=5 \ln 6 .
$$

