Mathematics 19A; Fall 2001; V. Ginzburg Practice Midterm II

1. For each of the ten questions below, state whether the assertion is true or false.
(a) Let $f(x)$ and $g(x)$ be differentiable functions. Then $(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+$ $g^{\prime}(x) f(x)$.
(b) $\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}$.
(c) The function $f(x)=\sqrt[3]{x}$ is differentiable at 0 .
(d) $\lim _{x \rightarrow 0} \frac{\tan (7 x)}{x}=7$.
(e) $\frac{d}{d x} \tan x=\frac{1}{\sin ^{2} x}$.
(f) $\frac{d}{d x} \ln (f(x))=\frac{f^{\prime}(x)}{f(x)}$.
(g) Every continuous functions is differentiable.
(h) $\frac{d}{d x} \ln |x|=\frac{1}{x}$.
(i) $\frac{d}{d x} a^{x}=a x^{a-1}$.
(j) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.
2. Find $f^{\prime}(x)$ for the following functions.
(a)

$$
f(x)=\tan (\cos x) .
$$

(b)

$$
f(x)=\log _{2}\left(\sin ^{-1} x\right) .
$$

(c)

$$
f(x)=\frac{x \ln x}{e^{x}} .
$$

(d)

$$
f(x)=\frac{\sqrt{1+x}}{\left(x^{3}-5\right)^{7}}
$$

3. Let $f(x)=\frac{1-x^{2}}{1+x^{2}}$.
(a) Find $f^{\prime}(x)$.
(b) Find the equation of the tangent line to the graph of $f(x)$ at the point $P(1,0)$.
4. Find $\frac{d y}{d x}$ by implicit differentiation, where $y=f(x)$ is given by the equation

$$
x^{2} y+y^{2} x=2 x
$$

and $x=1$ and $y=-2$.

