Mathematics 19A; Fall 2001; V. Ginzburg Practice Midterm II; Solutions

1. For each of the ten questions below, state whether the assertion is true or false.
(a) Let $f(x)$ and $g(x)$ be differentiable functions. Then $(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)$. Answer: \mathbf{T}.
(b) $\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}$.

Answer: T.
(c) The function $f(x)=\sqrt[3]{x}$ is differentiable at 0 .

Answer: F.
(d) $\lim _{x \rightarrow 0} \frac{\tan (7 x)}{x}=7$.

Answer: \mathbf{T}^{x}.
(e) $\frac{d}{d x} \tan x=\frac{1}{\sin ^{2} x}$.

Answer: $\mathbf{F} ;(\tan x)^{\prime}=1 / \cos ^{2} x$.
(f) $\frac{d}{d x} \ln (f(x))=\frac{f^{\prime}(x)}{f(x)}$.

Answer: T.
(g) Every continuous functions is differentiable.

Answer: F; for example, $y=|x|$ is continuous but not differentiable at $x=0$.
(h) $\frac{d}{d x} \ln |x|=\frac{1}{x}$.

Answer: T.
(i) $\frac{d}{d x} a^{x}=a x^{a-1}$.

Answer: $\mathbf{F} ; \frac{d}{d x} a^{x}=(\ln a) a^{x}$.
(j) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.

Answer: T.
2. Find $f^{\prime}(x)$ for the following functions.
(a) $f(x)=\tan (\cos x)$. Solution: By the chain rule:

$$
f^{\prime}(x)=\frac{1}{\cos ^{2}(\cos x)}(\cos x)^{\prime}=\frac{-\sin x}{\cos ^{2}(\cos x)}
$$

(b) $f(x)=\log _{2}\left(\sin ^{-1} x\right)$. Solution: By the chain rule:

$$
f^{\prime}(x)=\frac{1}{(\ln 2) \sin ^{-1} x}\left(\sin ^{-1} x\right)^{\prime}=\frac{1}{(\ln 2) \sin ^{-1} x} \cdot \frac{1}{\sqrt{1-x^{2}}}=\frac{1}{(\ln 2)\left(\sin ^{-1} x\right) \sqrt{1-x^{2}}} .
$$

(c)

$$
f(x)=\frac{x \ln x}{e^{x}}
$$

Solution: Using the quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(x \ln x)^{\prime} e^{x}-(x \ln x)\left(e^{x}\right)^{\prime}}{\left(e^{x}\right)^{2}} \\
& =\frac{(\ln x+1) e^{x}-x \ln x\left(e^{x}\right)}{\left(e^{x}\right)^{2}} \\
& =\frac{(\ln x+1)-x \ln x}{e^{x}} \\
& =\frac{1+(1-x) \ln x}{e^{x}}
\end{aligned}
$$

(d)

$$
f(x)=\frac{\sqrt{1+x}}{\left(x^{3}-5\right)^{7}}
$$

Solution: By the method of logarithmic differentiation,

$$
g^{\prime}(x)=g(x) \frac{d}{d x}[\ln g(x)]
$$

Take

$$
g(x)=\frac{\sqrt{1+x}}{\left(x^{3}-5\right)^{7}} .
$$

Then

$$
\ln g(x)=\frac{1}{2} \ln (1+x)-7 \ln \left(x^{3}-5\right)
$$

and

$$
\frac{d}{d x}[\ln g(x)]=\frac{1}{2(1+x)}-\frac{21 x^{2}}{x^{3}-5}
$$

Thus

$$
f^{\prime}(x)=\frac{\sqrt{1+x}}{\left(x^{3}-5\right)^{7}}\left(\frac{1}{2(1+x)}-\frac{21 x^{2}}{x^{3}-5}\right)
$$

Alternatively, one can use the quotient rule.
3. Let $f(x)=\frac{1-x^{2}}{1+x^{2}}$.
(a) Find $f^{\prime}(x)$.

Solution: By the quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(1-x^{2}\right)^{\prime}\left(1+x^{2}\right)-\left(1-x^{2}\right)\left(1+x^{2}\right)^{\prime}}{\left(1+x^{2}\right)^{2}} \\
& =\frac{(-2 x)\left(1+x^{2}\right)-\left(1-x^{2}\right)(2 x)}{\left(1+x^{2}\right)^{2}} \\
& =\frac{-2 x-2 x^{3}-2 x+2 x^{3}}{\left(1+x^{2}\right)^{2}} \\
& =\frac{-4 x}{\left(1+x^{2}\right)^{2}} .
\end{aligned}
$$

(b) Find the equation of the tangent line to the graph of $f(x)$ at the point $P(1,0)$.

Solution: The equation of the tangent to the graph of $y=f(x)$ at $P(a, f(a))$ is $y=$ $m x+f(a)-m a$, where $m=f^{\prime}(a)$. For $f(x)$ as above, we have $m=f^{\prime}(1)=-4 / 2^{2}=-1$. Thus, the equation is

$$
y=(-1) x+0-(-1) \cdot 1=-x+1
$$

4. Find $\frac{d y}{d x}$ by implicit differentiation, where $y=f(x)$ is given by the equation

$$
x^{2} y+y^{2} x=2 x
$$

and $x=1$ and $y=-2$.
Solution: By the method of implicit differentiation we have:

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2} y+y^{2} x\right) & =\frac{d}{d x}(2 x) . \\
\frac{d}{d x}\left(x^{2} y\right)+\frac{d}{d x}\left(y^{2} x\right) & =2 . \\
2 x y+x^{2} \frac{d y}{d x}+2 y \frac{d y}{d x} x+y^{2} & =2 . \\
x^{2} \frac{d y}{d x}+2 y \frac{d y}{d x} x & =2-\left(2 x y+y^{2}\right) . \\
\left(x^{2}+2 y x\right) \frac{d y}{d x} & =2-2 x y-y^{2} .
\end{aligned}
$$

Solving the last equation for $d y / d x$, we obtain

$$
\frac{d y}{d x}=\frac{2-2 x y-y^{2}}{x^{2}+2 y x}
$$

Finally, we plug in $x=1$ and $y=-2$:

$$
\frac{d y}{d x}=\frac{2+4-4}{1-4}=-\frac{2}{3}
$$

Remark: Alternatively, we can plug $x=1$ and $y=-2$ in the third equation $2 x y+x^{2} \frac{d y}{d x}+$ $2 y \frac{d y}{d x} x+y^{2}=2$ and then solve the resulting equation for $d y / d x$.

