Mathematics 19A; Fall 2001; V. Ginzburg Practice Final Solutions

1. For each of the ten questions below, state whether the assertion is true or false.
(a) Let $f(x)$ be continuous at $x=a$. Then $\lim _{x \rightarrow a} f(x)=f(a)$. Answer: T.
(b) Let f be a differentiable function and $f^{\prime}(c)=0$. Then $f(x)$ necessarily has a local maximum or a local minimum at $x=c$. Answer: F: Counterexample: $f(x)=x^{3}, c=0$.
(c) Let $f(x)=a^{x}$. Then $f^{\prime}(x)=x a^{x-1}$. Answer: $\mathbf{F}: f^{\prime}(x)=(\ln a) a^{x}$.
(d) Let $f(x)=\ln |x|$. Then $f^{\prime}(x)=1 / x$. Answer: T.
(e)

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)},
$$

provided that the limits exist and $\lim _{x \rightarrow a} g(x) \neq 0$. Answer: T.
(f) Assume that $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$. Then $y=f(x)$ has a local maximum at $x=c$. Answer: \mathbf{F}. The function has a local minimum at $x=c$.
(g) The function

$$
f(x)= \begin{cases}x-2 & \text { for } x<-1 \\ x^{2}-4 & \text { for } x \geq-1\end{cases}
$$

is continuous at $x=-1$. Answer: T.
(h) The function $f(x)=\sqrt{|x|}$ is differentiable at $x=0$. Answer: F.
(i) Assume that $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b) and $f(a)=$ $f(b)$. Then there exists a number c in (a, b) such that $f^{\prime}(c)=0$. Answer: T. This is Rolle's theorem.
(j) Let $f(x)$ and $g(x)$ be differentiable functions and $g^{\prime}(a) \neq 0$. Then, by L'Hospital's rule, one necessarily has that

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Answer: F: For L'Hospital's rule to apply, $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ must be an indeterminacy of the form $0 / 0$ or ∞ / ∞.
2. Find the following limits
(a) $\lim _{t \rightarrow 0} \frac{\sqrt{t+9}-3}{t}$. Solution:

$$
\begin{aligned}
\frac{\sqrt{t+9}-3}{t} & =\frac{\sqrt{t+9}-3}{t} \cdot \frac{\sqrt{t+9}+3}{\sqrt{t+9}+3} \\
& =\frac{(\sqrt{t+9})^{2}-3^{2}}{t(\sqrt{t+9}+3)} \\
& =\frac{t+9-9}{t(\sqrt{t+9}+3)} \\
& =\frac{1}{\sqrt{t+9}+3}
\end{aligned}
$$

for $t \neq 0$. Hence,

$$
\lim _{t \rightarrow 0} \frac{\sqrt{t+9}-3}{t}=\lim _{t \rightarrow 0} \frac{1}{\sqrt{t+9}+3}=\frac{1}{\sqrt{0+9}+3}=\frac{1}{6}
$$

Alternatively, one can use L'Hospital's rule.
(b) $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt[3]{x}}$. Solution: We have $\ln x \rightarrow \infty$ and $\sqrt[3]{x} \rightarrow \infty$ as $x \rightarrow \infty$. Hence, L'Hospital's rule applies. By L'Hospital's rule,

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt[3]{x}}=\lim _{x \rightarrow \infty} \frac{(\ln x)^{\prime}}{(\sqrt[3]{x})^{\prime}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{3 x^{2 / 3}}}=\lim _{x \rightarrow \infty} \frac{3 x^{2 / 3}}{x}=\lim _{x \rightarrow \infty} \frac{3}{\sqrt[3]{x}}=0
$$

(c) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$. We have $1-\cos x \rightarrow 0$ and $x^{2} \rightarrow 0$ as $x \rightarrow 0$. Hence, L'Hospital's rule applies. By L'Hospital's rule,

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\lim _{x \rightarrow 0} \frac{(1-\cos x)^{\prime}}{\left(x^{2}\right)^{\prime}}=\lim _{x \rightarrow 0} \frac{\sin x}{2 x}
$$

Now we apply L'Hospital's rule again:

$$
\lim _{x \rightarrow 0} \frac{\sin x}{2 x}=\lim _{x \rightarrow 0} \frac{(\sin x)^{\prime}}{(2 x)^{\prime}}=\lim _{x \rightarrow 0} \frac{\cos x}{2}=\frac{\cos 0}{2}=\frac{1}{2}
$$

(d) $\lim _{x \rightarrow 1-}(1-x) \tanh ^{-1} x$. Solution: This is an indeterminacy of the type $0 \cdot \infty$. Write it as

$$
\lim _{x \rightarrow 1-}(1-x) \tanh ^{-1} x=\lim _{x \rightarrow 1-} \frac{\tanh ^{-1} x}{(1-x)^{-1}}
$$

which is an indeterminacy of the type $0 / 0$, and hence L'Hospital's rule applies.

Thus,

$$
\begin{aligned}
\lim _{x \rightarrow 1-} \frac{\tanh ^{-1} x}{(1-x)^{-1}} & =\lim _{x \rightarrow 1-} \frac{\left[\tanh ^{-1} x\right]^{\prime}}{\left[(1-x)^{-1}\right]^{\prime}} \\
& =\lim _{x \rightarrow 1-} \frac{\left(1-x^{2}\right)^{-1}}{(1-x)^{-2}} \\
& =\lim _{x \rightarrow 1-} \frac{(1-x)^{2}}{1-x^{2}} \\
& =\lim _{x \rightarrow 1-} \frac{1-x}{1+x}=\frac{1-1}{1+1}=0 .
\end{aligned}
$$

3. Find $f^{\prime}(x)$ for the following functions.
(a) $f(x)=\frac{x^{2}}{1+x^{2}}$. Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(x^{2}\right)^{\prime}\left(1+x^{2}\right)-x^{2}\left(1+x^{2}\right)^{\prime}}{\left(1+x^{2}\right)^{2}}=\frac{2 x\left(1+x^{2}\right)-x^{2}(2 x)}{\left(1+x^{2}\right)^{2}} \\
& =\frac{2 x+2 x^{3}-2 x^{3}}{\left(1+x^{2}\right)^{2}}=\frac{2 x}{\left(1+x^{2}\right)^{2}} .
\end{aligned}
$$

(b) $f(x)=\sin \left(\frac{\ln x}{x}\right)$. Solution: By the chain rule:

$$
f^{\prime}(x)=\cos \left(\frac{\ln x}{x}\right) \cdot\left(\frac{\ln x}{x}\right)^{\prime}
$$

By the quotient rule:

$$
\begin{aligned}
\left(\frac{\ln x}{x}\right)^{\prime} & =\frac{(\ln x)^{\prime} x-(x)^{\prime} \ln x}{x^{2}} \\
& =\frac{x \frac{1}{x}-\ln x}{x^{2}} \\
& =\frac{1-\ln x}{x^{2}} .
\end{aligned}
$$

Thus,

$$
f^{\prime}(x)=\cos \left(\frac{\ln x}{x}\right) \cdot \frac{1-\ln x}{x^{2}} .
$$

(c) $f(x)=\frac{(x+1)^{2}}{\sqrt{x^{2}+2 x}}$. Solution: Use logarithmic differentiation:

$$
f(x)=\frac{(x+1)^{2}}{\sqrt{x} \sqrt{x+2}}
$$

and so

$$
\ln f(x)=2 \ln (x+1)-\frac{1}{2} \ln x-\frac{1}{2} \ln (x+2) .
$$

Thus

$$
[\ln f(x)]^{\prime}=\frac{2}{x+1}-\frac{1}{2 x}-\frac{1}{2(x+2)}
$$

and

$$
f^{\prime}(x)=f(x)[\ln f(x)]^{\prime}=\frac{(x+1)^{2}}{\sqrt{x^{2}+2 x}}\left(\frac{2}{x+1}-\frac{1}{2 x}-\frac{1}{2(x+2)}\right) .
$$

(d) $f(x)=x^{-1} \tan ^{-1} x^{2}$. Solution: By the product rule:

$$
f^{\prime}(x)=\left(x^{-1}\right)^{\prime} \tan ^{-1} x^{2}+x^{-1}\left(\tan ^{-1} x^{2}\right)^{\prime}=\frac{-\tan ^{-1} x^{2}}{x^{2}}+x^{-1}\left(\tan ^{-1} x^{2}\right)^{\prime}
$$

Furthermore, by the chain rule,

$$
\left(\tan ^{-1} x^{2}\right)^{\prime}=\frac{1}{1+\left(x^{2}\right)^{2}} \cdot\left(x^{2}\right)^{\prime}=\frac{2 x}{1+x^{4}}
$$

Thus,

$$
f^{\prime}(x)=-\frac{\tan ^{-1} x^{2}}{x^{2}}+\frac{2}{1+x^{4}}
$$

4. Find the equation of the tangent line to the curve $x^{2}+x y-y^{2}=1$ at the point $(2,3)$. Solution:

Step 1. Using implicit differentiation,

$$
\begin{aligned}
\frac{d}{d x} x^{2}+\frac{d}{d x}(x y)-\frac{d}{d x} y^{2} & =0 \\
2 x+y+x \frac{d y}{d x}-2 y \frac{d y}{d x} & =0
\end{aligned}
$$

Now let us plug in the values $x=2$ and $y=3$. We get:

$$
4+3+2 \frac{d y}{d x}-6 \frac{d y}{d x}=7-4 \frac{d y}{d x}=0
$$

Thus $\frac{d y}{d x}=7 / 4$. This is the slope m of the tangent.
Step 2. The equation of the tangent through the point (a, b) is $y=m x+b-m a$. Plugging $a=2$ and $b=3$, we obtain

$$
y=\frac{7 x}{4}+3-2 \cdot \frac{7}{4}=\frac{7 x}{4}-\frac{1}{2}
$$

5. Let $f(x)=2 x^{3}+3 x^{2}-12 x+7$.
(a) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$. Solution:

$$
f^{\prime}(x)=6 x^{2}+6 x-12
$$

and

$$
f^{\prime \prime}(x)=12 x+6
$$

For what follows it's also useful to note that $f^{\prime}(x)=6(x-1)(x+2)$.
(b) Find the local maxima and minima of f. Solution: Local maxima and minima may occur only when $f^{\prime}(x)=0$, i.e.,

$$
f^{\prime}(x)=6 x^{2}+6 x-12=0
$$

which has solutions -2 and 1 . Then $f^{\prime \prime}(-2)=-18<0$ and $f^{\prime \prime}(1)=18>0$. By the second derivative test, f has a local maximum at $x=-2$ equal to $f(-2)=27$ and a local minimum at $x=1$ equal to $f(1)=0$.
(c) Find the intervals of increase and decrease for f. Solution: The intervals of increase are given by the inequality

$$
f^{\prime}(x)=6 x^{2}+6 x-12>0
$$

Hence, the intervals of increase are $(\infty,-2)$ and $(1, \infty)$.
The intervals of decrease are given by the inequality

$$
f^{\prime}(x)=6 x^{2}+6 x-12<0
$$

Therefore, the interval of decrease is $(-2,1)$.
(d) Find the inflection points of f. Solution: The inflection points are given by the equation $f^{\prime \prime}(x)=0$:

$$
f^{\prime \prime}(x)=12 x+6=0
$$

This equation has one solution $-1 / 2$. Thus the inflection point is $-1 / 2$.
(e) Find the intervals of concavity of f. Solution: The intervals of concavity upward are given by the inequality

$$
f^{\prime \prime}(x)=12 x+6>0
$$

Hence, the interval of concavity upward is $(-1 / 2, \infty)$.
The intervals of concavity downward are given by the inequality

$$
f^{\prime \prime}(x)=12 x+6<0
$$

Hence, the interval of concavity downward is $(-\infty,-1 / 2)$.
6. Find the absolute maximum and the absolute minimum of $f(x)=x e^{-x^{2} / 2}$ on $[0,2]$.

Solution: Let us first find the critical numbers of $f(x)$, i.e., solutions to $f^{\prime}(x)=0$:

$$
\begin{aligned}
f^{\prime}(x) & =(x)^{\prime} e^{-x^{2} / 2}+x\left(e^{-x^{2} / 2}\right)^{\prime}=e^{-x^{2} / 2}+x e^{-x^{2} / 2}\left(-x^{2} / 2\right)^{\prime} \\
& =e^{-x^{2} / 2}-x^{2} e^{-x^{2} / 2}=e^{-x^{2} / 2}\left(1-x^{2}\right)
\end{aligned}
$$

The solutions to

$$
f^{\prime}(x)=e^{-x^{2} / 2}\left(1-x^{2}\right)=0 \quad \text { or, equivalently, } \quad 1-x^{2}=0
$$

are $x= \pm 1$. Only one of these numbers, namely $x=1$, is in the interval $[0,2]$.
To find the absolute maximum and the absolute minimum we need to pick the greatest and the smallest value of $f(x)$ among its values at the end points of the interval and the critical numbers within the interval:

$$
\begin{aligned}
f(0) & =0 \\
f(1) & =e^{-1 / 2}, \quad \text { (critical number) } \\
f(2) & =2 e^{-2}
\end{aligned}
$$

Note that $0<2 e^{-2}<e^{-1 / 2}$. Thus the absolute maximum is $f(1)=e^{-1 / 2}$ and the absolute minimum is $f(0)=0$.
7. Find the area of the largest rectangle that can be inscribed in a right triangle with legs of length a and b if two sides of the rectangle lie along the legs.
Solution: Let x be the length of the side along the leg of length a and y be the length of the side along the leg of length b.

Then

$$
\frac{b-y}{x}=\frac{b}{a}
$$

Solving this equation for y, we obtain

$$
y=b\left(1-\frac{x}{a}\right) .
$$

The area of the rectangle is

$$
A=x y=b x\left(1-\frac{x}{a}\right)
$$

Thus

$$
\frac{d A}{d x}=b\left(1-\frac{x}{a}\right)+b x\left(-\frac{1}{a}\right)=b\left(1-\frac{2 x}{a}\right) .
$$

Solving

$$
\frac{d A}{d x}=b\left(1-\frac{2 x}{a}\right)=0
$$

we obtain $x=a / 2$, which corresponds to the area $A=a b / 4$. As in the previous problem $x=a / 2$ is a critical number and to find the maximal area we need to compare $A=a b / 4$ with A for the extreme values of x which are 0 and a. For both of these values of x, we have $A=0$. Hence $A=a b / 4$ is the largest possible area.

