Mathematics 103A; Winter 2017; V. Ginzburg Practice Final

- 1. For each of the ten questions below, state whether the assertion is *true* or *false*. (You do not need to justify your answer.)
 - (a) The domain $D = \{z \in \mathbb{C} : |\operatorname{Im} z| > 1\}$ is connected and simply connected.
 - (b) The equation $z^7 = 8$ has exactly 8 distinct solutions.
 - (c) The function $\frac{\cos z 1}{(1 z^5)z^2}$ has a pole of order 5 at $z_0 = 0$.
 - (d) $Log(-1) = \pi$.
 - (e) The Taylor series of the function $f(z) = \frac{e^z}{(z-10)(z-i)}$ at $z_0 = 1$ has radius of convergence $\sqrt{2}$.
 - (f) The function f = u + iv is analytic at a point z if and only if $u_x = v_y$ and $u_y = -v_x$ at z.
 - (g) Assume that f is analytic and bounded on the domain $0 < |z| < \epsilon$, but not at 0. Then f has a removable singularity at 0.
 - (h) Assume that f has an essential singularity at z_0 . Then $\lim_{z\to z_0} f(z) = \infty$.
 - (i) The series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges conditionally.
 - (j) The power series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} z^n$ converges uniformly in the disk $|z| \le 1/2$.
- 2. Find the Taylor series of the following functions:
 - (a) $f(z) = z \cosh(z^2)$ at $z_0 = 0$,
 - (b) $f(z) = \frac{z}{z^4 + 4}$ at $z_0 = 0$,
 - (c) $f(z) = 1/e^z$ at $z_0 = 1$.
- 3. Find the Laurent series expansions of the following functions:
 - (a) $f(z) = \frac{1}{z^2(1-z)}$ in the region 0 < |z| < 1,
 - (b) $f(z) = \frac{\sinh z}{z^2}$ in the region $z \neq 0$,
 - (c) $f(z) = z^2 e^{1/z}$ in the region $z \neq 0$.

- 4. Find and classify the singularities of the following functions f. If a singularity is a pole, find its order. Find the residues at these singularities.
 - (a) $f(z) = \frac{e^z}{z^2 + \pi^2},$

(b)
$$f(z) = \frac{1}{z} \cos \frac{1}{z-1},$$

(c)
$$f(z) = \frac{1}{z(e^z - 1)}$$
.

5. Use Cauchy's residue theorem to evaluate the integrals

(a)
$$\int_C z^2 e^{1/z} dz$$
, where C is the circle $|z| = 5$ oriented counterclockwise.
(b) $\int_C \frac{4z-5}{z(z-2)} dz$, where C is the square $|x| + |y| = 1$ oriented counter-
clockwise.

6. Use residues to evaluate the integrals

(a)
$$\int_0^\infty \frac{x^2 dx}{x^6 + 1},$$

(b)
$$\int_{-\infty}^\infty \frac{\cos x dx}{x^2 + 1}.$$

- 7. Prove that there exist no analytic function f on the unit disk such that $f(1/n) = \sin(1/n)$ and f(-1/n) = 1/n for all positive integers $n \ge 1$.
- 8. Prove that there exist no analytic function f on the closed disk $|z| \leq 2$ such that f(z) = 0 on the boundary of the disk while f(1) = i.
- 9. Let f be an entire function such that |10 f(z)| < 1 for all z. Prove that f is constant.