Mathematics 103A; Winter 2016; V. Ginzburg Practice Midterm

1. For each of the ten questions below, state whether the assertion is true or false. (You do not need to justify your answer.)
(a) The subset of \mathbb{C} given by the conditions $x \leq y^{2}$ is closed.
(b) $\log z$ is an entire function.
(c) Every analytic function has an antiderivative in its domain.
(d) $|\sin z| \leq 1$ for all $z \in \mathbb{C}$.
(e) Let C be the circle of radius 1 centered at the origin. Then

$$
\int_{C} f(z) d z=0
$$

for every function analytic in the disk of radius 2 centered at 0 .
(f) The function $f(z)=z \bar{z}$ is analytic.
(g) The equation $z^{n}=w$ has exactly n solutions when $w \neq 0$.
(h) $\lim _{z \rightarrow \infty} \frac{\bar{z}}{z}=1$.
(i) Every analytic function is necessarily continuous.
(j) The Cauchy-Goursat theorem asserts that if f is analytic at all points interior to and on a simple closed contour C, then

$$
\int_{C} f(z) d z=0 .
$$

2. Find all solutions of the following equations:
(a) $z^{4}=-8-8 \sqrt{3} i$,
(b) $e^{2 i z}=-1+\sqrt{3} i$.
3. Use the Cauchy-Riemann equations to determine which of the following functions f are analytic and, when this is the case, find the derivative $f^{\prime}(z)$ expressed as a function of z :
(a) $f(z)=x^{2}+y^{2}+2 x y i$,
(b) $f(z)=z \operatorname{Im} z$,
(c) $f(z)=e^{-\theta}(\cos (\ln r)+i \sin (\ln r))$.
4. Evaluate the following integrals:
(a) $\int_{C} \frac{d z}{z^{n}}$, where C is the upper half-circle $z(\theta)=R e^{i \theta}, 0 \leq \theta \leq \pi$,
(b) $\int_{i}^{i+1} e^{\pi z} d z$,
(c) $\int_{C} e^{\bar{z}} d z$, where C is the triangle with vertices $1,1+i$ and i oriented counterclockwise.
5. (a) Let f be an entire function such that $\operatorname{Re} f(z)$ is constant. Prove that f is constant.
(b) Let f be a function analytic in a connected domain and $\operatorname{Arg} f(z)$ is constant. Prove that f is constant.
6. Let C be the upper half-circle $|z|=2$. Prove that

$$
\left|\int_{C} \frac{e^{z / 2}(z-2)}{z^{4}+1} d z\right| \leq \frac{8 \pi e}{15} .
$$

