Mathematics 103A; Winter 2016; V. Ginzburg Practice Midterm

- 1. For each of the ten questions below, state whether the assertion is *true* or *false*. (You do not need to justify your answer.)
 - (a) The subset of \mathbb{C} given by the conditions $x \leq y^2$ is closed.
 - (b) Log z is an entire function.
 - (c) Every analytic function has an antiderivative in its domain.
 - (d) $|\sin z| \le 1$ for all $z \in \mathbb{C}$.
 - (e) Let C be the circle of radius 1 centered at the origin. Then

$$\int_C f(z) \, dz = 0$$

for every function analytic in the disk of radius 2 centered at 0.

- (f) The function $f(z) = z\bar{z}$ is analytic.
- (g) The equation $z^n = w$ has exactly n solutions when $w \neq 0$.
- (h) $\lim_{z\to\infty} \frac{\bar{z}}{z} = 1$.
- (i) Every analytic function is necessarily continuous.
- (j) The Cauchy–Goursat theorem asserts that if f is analytic at all points interior to and on a simple closed contour C, then

$$\int_C f(z) \, dz = 0.$$

- 2. Find all solutions of the following equations:
 - (a) $z^4 = -8 8\sqrt{3}i$,
 - (b) $e^{2iz} = -1 + \sqrt{3}i$.
- 3. Use the Cauchy–Riemann equations to determine which of the following functions f are analytic and, when this is the case, find the derivative f'(z) expressed as a function of z:
 - (a) $f(z) = x^2 + y^2 + 2xyi$,
 - (b) $f(z) = z \operatorname{Im} z$,
 - (c) $f(z) = e^{-\theta} (\cos(\ln r) + i\sin(\ln r)).$

- 4. Evaluate the following integrals:
 - (a) $\int_C \frac{dz}{z^n}$, where C is the upper half-circle $z(\theta) = Re^{i\theta}, \ 0 \le \theta \le \pi$,
 - (b) $\int_{i}^{i+1} e^{\pi z} dz$,
 - (c) $\int_C e^{\bar{z}} dz$, where C is the triangle with vertices 1, 1+i and i oriented counterclockwise.
- 5. (a) Let f be an entire function such that $\operatorname{Re} f(z)$ is constant. Prove that f is constant.
 - (b) Let f be a function analytic in a connected domain and $\operatorname{Arg} f(z)$ is constant. Prove that f is constant.
- 6. Let C be the upper half-circle |z|=2. Prove that

$$\left| \int_C \frac{e^{z/2}(z-2)}{z^4 + 1} \, dz \right| \le \frac{8\pi e}{15}.$$