## Mathematics 103A; Winter 2016; V. Ginzburg Practice Final

1. For each of the ten questions below, state whether the assertion is true or false. (You do not need to justify your answer.)
(a) The domain $D=\{z \in \mathbb{C}:|\operatorname{Im} z|>1\}$ is simply connected.
(b) The equation $z^{7}=8$ has exactly 8 distinct solutions.
(c) The function $\frac{\cos z-1}{\left(1-z^{5}\right) z^{2}}$ has a pole of order 5 at $z_{0}=0$.
(d) $\log (-1)=\pi$.
(e) The Taylor series of the function $f(z)=\frac{e^{z}}{(z-10)(z-i)}$ at $z_{0}=1$ has radius of convergence $\sqrt{2}$.
(f) The function $f=u+i v$ is analytic at a point $z$ if and only if $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ at $z$.
(g) Assume that $f$ is analytic and bounded on the domain $0<|z|<\epsilon$, but not at 0 . Then $f$ has a removable singularity at 0 .
(h) Assume that $f$ has an essential singularity at $z_{0}$. Then $\lim _{z \rightarrow z_{0}} f(z)=\infty$.
(i) The series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges conditionally.
(j) The power series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} z^{n}$ converges uniformly in the disk $|z| \leq 1 / 2$.
2. Find the Taylor series of the following functions:
(a) $f(z)=z \cosh \left(z^{2}\right)$ at $z_{0}=0$,
(b) $\quad f(z)=\frac{z}{z^{4}+4}$ at $z_{0}=0$,
(c) $\quad f(z)=1 / e^{z}$ at $z_{0}=1$.
3. Find the Laurent series expansions of the following functions:
(a) $f(z)=\frac{1}{z^{2}(1-z)}$ in the region $0<|z|<1$,
(b) $\quad f(z)=\frac{\sinh z}{z^{2}}$ in the region $z \neq 0$,
(c) $\quad f(z)=z^{2} e^{1 / z}$ in the region $z \neq 0$.
4. Find and classify the singularities of the following functions $f$. If a singularity is a pole, find its order. Find the residues at these singularities.
(a) $f(z)=\frac{e^{z}}{z^{2}+\pi^{2}}$,
(b) $f(z)=\frac{1}{z} \cos \frac{1}{z-1}$,
(c) $f(z)=\frac{1}{z\left(e^{z}-1\right)}$.
5. Use Cauchy's residue theorem to evaluate the integrals
(a) $\int_{C} z^{2} e^{1 / z} d z$, where $C$ is the circle $|z|=5$ oriented counterclockwise.
(b) $\int_{C} \frac{4 z-5}{z(z-2)} d z$, where $C$ is the square $|x|+|y|=1$ oriented counterclockwise.
6. Use residues to evaluate the integrals
(a) $\int_{0}^{\infty} \frac{x^{2} d x}{x^{6}+1}$,
(b) $\int_{-\infty}^{\infty} \frac{\cos x d x}{x^{2}+1}$.
7. Prove that there exist no analytic function $f$ on the unit disk such that $f(1 / n)=$ $\sin (1 / n)$ and $f(-1 / n)=1 / n$ for all positive integers $n \geq 1$.
8. Prove that there exist no analytic function $f$ on the closed disk $|z| \leq 2$ such that $f(z)=0$ on the boundary of the disk while $f(1)=i$.
9. Let $f$ be an entire function such that $|10-f(z)|<1$ for all $z$. Prove that $f$ is constant.
